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INTRODUCTION

This monograph was written for two reasons. One, it was felt
that workers in magnetobiology would welcome a compilation of material
which at present is scattered widely and sometimes difficult to obtain.
And two, that it would encourage or at least be helpful to those who
wish to become involved in the intricacies of magnetobiology. It is not
- a text on biology and, in fact, mentions little about the biological
effects of magnetic fields. This material is also voluminous and scat-
tered, but can be found rather readily and several bibliographies exist.
This ﬁork will attempt to present a good deal about magnetic fields (or
lack of them) necessary to perform experiments in magnetobiology, or to
provide a basls necessary to interpret those which have been done and

reported.

Frankly, it is a bit uneven in its treatment of the various
aspecfs of magnetism. This has happened for several reasons. First, it
is expected that those who will use the monograph will represent a wide
range of sophistication and experience, hence it is hoped both the
beginner and the advanced user will find something useful. Second,
some aspects required a deeper discussion than others in order to reach
a useful point. Thirdly, more material was available for somé topics
than for others. And lastly, the particular interests of the author,
it must be admitted, biased the depth of treatment. It was not meant
to be a text but rather a combination of introduction, guide, reference
and handbook.

It is suggested that 1t not be read through from beginning to
end, but rather used as needed. 1If the equations get sticky in some
parts skip them and see what happens when they are used without under-
standing them precisely. Some calculations have been recorded in great

detall because 1n order to be useful we héve to end up with a number
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which we can apply to real life., It is believed that concrete examples
are the best way to bridge the gap from theory to practice and concrete
examples are thus given. For those who wish to go further and branch
out in this field, sufficient references have been given to get onto the
main branches of the reference trees and from there to the fine twigs.
No claim is made of exhaustive treatment or references in this work.
Neither is originally claimed. Rather it is hoped a service has been
performed and a need met in bringing together a wide diversity of ma—~

terial and explaining it sufficiently to allow it to be put to immediate

and practical use,

R. J. Gibson August 1969



CHAPTER 1
GENERAL DISCUSSION OF MAGNETISM

Magnetism has been known to man for over 2000 years and the
lodestone which attracted iron was described by Lucretius who died in
55 B.C. He said "--~I will proceed to discuss by what law of nature it
comes to pass that iron can be attracted by that stonme which the Greeks
call the Magnet (Magnes Lopis) from the name of its native place -- the
country of the Magnesians. This stone men wonder at——"(l). These
natural magnets, the lodestone, are a variety of naturally occurring
iron oxide, magnetite (Fe203). The Chinese had by 121 A.D.* learned
that an iron rod magnetized by a piece of lodestone and hung on a thread
would align itself approximately with the earth's north-south direction.
Little progress was made in the study of this phenomena until 1600 when
William Gilbert published his treatise De Magrnete. Among other interest-
ing experiments he reports on increasing the holding power of a lode-
stone By a factor of five by providing it with pole pieces. It was not
until 1820, However, that the connection between electric current and
magnetism.was discovered by Hans Chrisfian Oersted. Immediately there-
after great progress in theory and application was made. Many men
whose names are now preserved in the names of various electric and mag-
netic units investigated and contributed to the knowledge about magnetism.
Among these names besides Gilbert and Oersted we find Michael Faraday,
Joseph Henry, H. F. E. Lenz,nMadame and Pierre Curie, Andre' Ampere'
and later James Clark Maxwell. They showed and put on a quantitative
basis that one, magnetic effects would be produced by moving electric
charges and two, electric charges would be Induced to move by moving
magnets or moving magnetic fields and hence moving charges exert forces
on one another entirely independent of the usual electristatic forces.

We can say, as a definition of a magnetic field, that if a conductor

*Some legends tell of a crude Chinese compéss in use around 2700 B.C.
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carrying a current experiences a ''magnetic' force then a magnetic field
is said to exist in the region of that conductor. Another way of say-
ing this is: a magnetic field is sald to exist at a point if a force,
in addition to any electrostatic force, 1s exerted on a moving charge
at that point. This puts the phenomenon of a magnetic field on a
simpie and fundamental basis. These statements in the form of physical
equations can be utilized to determine (although sometimes with consid-
erable mathematical complication) both steady and fluctuating magnetic
fields in any region due to currents in any configuration of conductors.
Further, it can be used to determine the forces and actions of charged
moving particles in matter whether biological or nombiological to a
degree limited only by our ability to model satisfactorily these sys—

tems and to obtain solutions to the equations describing these models.

We will not go into the latter aspects of this pair of general
problems to any degree. Our attention will be focused on the practical
aspects of generating magnetic fields of the desired configuration for

carrying out experiments with biological systems.

We will attempt in this discussion to write for the biologist,
zoologist, protozologist, botanist, chemist, ecologist, space flight
experimenter, physiologist, bacteriologist, etc. In short, for those
life scientists not now familiar with the production and use of magnetic
fields, but who wish to use them to perform experiments on living

systems,

At present, a considerable literature has accumulated and is
expanding on the biological éffects of magnetic-fieldé. Experiﬁents
have been reported on the change in growth rate of bacteria, protozoa,
enzymes and seeds, through the orientation of Paramecium, planaria and
Volvox and on up to the scoptic flicker fusion rate change in man as a
function of the strength or space rate of change of the magnefic field.
And these are only a few of the many and diverse experiments ranging
over the whole field of blology and physiology which have been reported.
They are mentioned to give some idea of the diversity which, in part,
leads to the complexity of the field of biomagnetics or magnetobiology.
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Good experiments in bilomagnetics are not easy to do and much less easy
to interpret. Many experiments have been rather carelessly done or at
least poorly described. However, it is not our purpose here to criti-
cize, but rather to make available a body of information that will help
the life scientist to set up and perform and report a biomagnetics ex-
periment better and more easily, not from the standpoint of biology but
from the standpoint of the physical magnetic field used in his experiment.

Hopefully, we will introduce the proper terminology, make
clear the "units", simplify the design procedures and suggest means of
getting what is wanted in the way of apparatus., Further, we hope that
‘a better understanding of what a magnetic field is, what it can do and
how it does it will occur as a result of the use of this work., We will
not attempt to make the life scientist an exper? in magnetics, there are
very few in the physical sciences. We will try to provide a good num-
ber of "cookbook" design procedures with sufficient basic theory to
fulfill the requirements of many biomagnetics experimenters. There is
a large gap between the simple theory in elementary physics texts and
that found in advanced texts on electricity and magnetism., The one>
simply does not tell enough and the other requires some rather sophils—
ticated derivations starting from the most general theories given.
Neither usually has much to say about practical design of coils and
fields. It is in this immediate area that we hope this exposition will

be useful,

The specific material which this monograph will try to cover
will be divided into three main categories. The filrst will be the
fundamentals of magnetism, the second, the design of physical apparafus-
for producing magnetic fields (and removing them) of the desired size,
shape and uniformity and the third, on how to measure these fields
once they have been produced. The remaining material will be to supple-

ment these three basic areas.

The requirements of life scientists for a magnetic flux den-
sity ranging from "zero" (or as small as possible) say 10_4 gauss (10_8

weber/sqm) to 100,000 gauss (10 weber/sqm) is a very wide range which
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is not simply handled by any one procedure for producing such flux den-
sities., This problem is further complicated by the fact that the volume
in which this flux density may be required may range from a few cubic
millimeters to a few cubic meters. Fortunately, the highest fluxes are
not always needed in the largest volumes, certainly they cannot be ob-

tained easily. (See Busby(z)

for a good listing of high magnetic field
experiments.) In this paper we will not attempt to cover either the
very smallest or the very largest fields. These are best left to the
specialist in shielding or magnetic machinery, but rather to provide

an understanding of the intermediate flux densities from say .005 gauss
(5 x 10_7 webers/sq meter) to say 1000 gauss (0.1 webers/sq meter). One
reason for this is given above, another reason is that it is believed by
this writer that in this intermediate region there 1is still a vast num-—
ber of experiments which can be performed, many of which will lead to
useful information. There is no question that biological effects exist,
In extremely high flux densities many of the observed effects can be
attributed simply to the relatively large potentials generated by the
motion of conducting material emitting lines of flux. As an example of
this let us suppose we have a flux density of 50,000 gauss (5 webers/mz)
in which a small animal is moving at a velocity of 2 cm/sec (0.02 m/sec)
so that a portion of its body of say.5 em length (0.05 m) is cutting
the flux lines at right angles. The voltage generated from end to end
of this length would then be:

=
]

Blv (mks)
(5)(0.05)(0.02) = 5 x 1073 voilts
5 millivolts

A voltage of this magnitude is on the same order as many normally oc-
curring biological potentials and could be expected to have a very
significant effect on the behavior of the animal and if continued over
a period of time a significant lasting physiological effect. Thus,

some of the effects due to high flux densities can readily be explained,

whereas some of the reported effects on, for example, the reduction of
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sodium influx by some 20% in frog skin at flux denmsities on the order
of 500 gauss (.05 webers/mz) cannot be explained by this mechanism,
Further, a number of interesting effects have been reported due to the
reduction of the flux density by several orders of magnitude below that
of the earth's normal field. This question, whether the removal of the
normal earth's field has a significant biological effect, remains open
to further experimentation however. In fact, there remains much to be
done in the field of biomagnetics. At present, many effects have been
observed, but very few explanations for these effects have been forth-
coming. Most biomagnetic phenomena seem unrelated to each other except
that they are all the result of an applied magnetic field. Some ef-
fects seem not to be proportional to the field strength, others do,

gsome proportional to the space rate of change of the field strength,
others more or less independent of that gradient. It seems imperative
that carefully thought out and meticulously designed experiments should
now be performed specifically aimed at revealing the nature and/or
basic mechanism behind the external effect. This will not be easy since
there are probably several basic mechanisms which account for the wide

range of phenomena observed to date.

Chapter 1 - References

1. Permanent Magnets and Magnetism, D. Hadfield Ed., John Wiley and
Sons, 1962, : '

2. Busby, D. E., Biomagnetics, NASA-CR-889, prep. by Lovelace Founda-
tion for Medical Education and Research under Contract NASr-115
for NASA, September 1967.

Also see:

Bibliography of the Biological Effects of Magnetic Fields Federation
of American Societies for Experimental Biology, Sept.-Oct. 1962,
Vol. 21, No. 5, Part III, Supp. No. 12, L. D. Davis, K. Pappajohn,
Ed. P, E. Spiegler.

Barnothy, M. F. (Ed.), Biological Effects of Mugnetic Fields,
Plenum Press, 1964, '



CHAPTER 2

A DISCUSSION OF THE DIMENSIONS AND UNITS OF
THE MAGNETIC QUANTITIES

In order to use magnetic fields and fluxes it is necessary
to have names for them and to have measures for them, Further, it is
necessary to understand their relationships to each other and to other
physical quantities, such as the electrical and mechanical quantities,
Because of the many systems of units and dimensions (and hence forms
of equations) employed in discussing magnetic quantities it was felt
that a discussion of the basic ideas of dimensions and unit systems
would be useful. The following is an abbreviated explanation directed
towards the development and usage of systems and units of the magnetic
quantities, It is intimately connected with the history and fundamental
concepts of the magnetic field.

It will be noted that almost every text and paper discussihg
magnetic fields and utilizing equations to compute the various magnetic
quantities will present the equations and/or quantities in slightly
different form and use different names for the units involved. This is
the result of the many justifiable possibilities in the cholce of di-
mensions or dimension systems and in the further choice of unit systems.
It is hoped that in this discussion we may be able to lessen somewhat
the aura of confusion and perhaps explaln why much of it has occurred.
The question of the proper diménsions to use for elecfromagnetié quan-
tities has raised more discussion than any other single question in
dimension~system study. It is not surprising,'therefore, for the new-
comer (or even the experienced) to be confused or to make mistakes in

calculations and/or nomenclature.

Mathematics 1s a symbolic description of the functional re-
lationships between numerical quantities either constant or varying.

The numerical values are unique and absolute and do not depend on
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measurements of the world, but rather on conceptions of the mind. For
all practical purposes, two is two in any language anywhere in the
world. On the other hand, physics is concerned with the symbolic re-
lationships of various measured quantities. These quantities having
been created or definedare subject to various logical or convenient
cholces in their dimensions and sizes. Physical quantities are deter-
mined by their relationship to a etandard. Thus, a particular rod may
be said to be of length L, where L = N x U, N is a pure number and de-
notes the number of times the standard unit U is contained in the par-
ticular length L. U may be meters and N = 10 so that L = 10 meters
and the standard fits into the particular rod 10 times.

A discussion of units and their relationships will be

treated more completely later on in this discussion.

Dimensions and Dimension Systems

The important thing to understand here 1s that the dimensions
of a physical quantity has nothing to do with the units used to describe
that quantity. The dimension is a common property or description of
the class to which the physical quantity belongs, whereas the unit in
which it is measured is referred to a physical standard and 1s the
physical quantifier, the numerical relation to that standard. Thus, we
find that any linear extension in real space has the dimension length
[L] and may be related to a standard in feet, meters, centimeters, miles
or any other conventional or unconventional standard unit or measure.
Fourier first introduced this concept in the early 1800'3. Its use
clearly distinguishes physical quantities from mathematical numbers. No
physical quantity may be designated as absolutely fundamental although
it may be convenient to consider them to be so.. Thus, length [L],
time [T] and mass [M] are chosen in many dimension systems as fundamental
dimensions with other physical quantities derived in terms of these
three dimensions. In a mechanical system only three dimensions are re~-
quired to form a consistent and complete set for that field of science,
Force [F] or energy [E] could have been chosen as a fundamental dimen-—
sion along with [L] and [T] and a consistant system developed. This

has in fact been done and a comparison of these systems is given.,
_9_



Dimensions

Physical

Quantity Physical Gravitational Energetical

and Symbol System System System
length, 1 [L] [L] [L]
time, t [T] [T] [T]
velocity, v L] [rt AR Ly r1t
nass, m [M] A N R A f o o
force, f M} [L] [1]”2 [F] (8] L]}
pressure, p  [M] (L7 (1172 [F] [L]72 (£] [L]73
energy, E g L1 m17? [E [E]
power, P o w1 m? e mtt e ortt
grav. const, k 7T (113 7% w17t m® m™t @t w® mt

etc.

Note that a perfectly consistent system is developed 1n each of these
systems. Those three and one other, The Astrophysical System are the
four which have come into general use. The Astrophysical System de-
fines the gravitational constant as a fundamental unit [k]. The Physical
Systeﬁ is generally used in the various branches of science. The
Gravitational System is widely used in engineering especially where
combined with English units and the Energetical System has been useful

in heat engineering.

However, for a heat dimension system an additional dimension
is required. To complete this system, the fourth dimension temperature
[6] is added. This has beeﬁ.done to the three systems shown inm the
table and all are in use, especially the first and second. So far the
complications are not so great. However, for a system involving elec-
trical physical quantitites, another dimension must be added. Here we
have a wide choice. Any, I repeat, any electromagnetic (or electro-
static) physical quantity may be chosen since no philosophical argument
is more valid for one than another. However, there are three funda-
mental electromagnetic experiments which involve the "basic" quantities

of electromagnetism. These are
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Depending on
tems can be developed.

not including the possible unit choices.

where

1)

2)

3)

Q,Q
£ o=k —

Coulomb's Law Experiment

e e 2

r

1112
f =k 1 Amperes Law Experiment
m m T

(by definition I = dQ/dt)

V= —k.-éi voltage generation experiment.

i dt

Fh Hh
|

L
H gy
il

= electric current

o < = N
I

3

= center to center distance

= the electrostatic force between charges
= the electromagnetic force between current loops

quantity of electrostatic charge

= length of the current carrying conductors
the induced voltage or electromotive force
= the magnetic flux linking the conductor

various proportionality constants

how these are chosen a vast multitude of dimensional sys~

There are at least 8 systems in popular use,

mass

- 1i -

System Quantities Chosen as Fundamental
Electrophysical L, T, M, Q
Electrogravitational L, T, F, Q
Definitive L, T, P, Q
"Practical" L, T, I, R.

Energetical L, T, E, V
Electrostatic L, T, M, ke—l
"Electromagnetic L, T, M, km )
Gaussian L, T, M, k_ and ke = km c
= length
= time



Q = electrostatic charge

F = force

P = power

I = current

E = energy

V = voltage

ke = proportionality constant in Coulomb's Law and is taken
as the absolute dielectric constant.

km = proportionality constant in Ampere's Law and is taken
as the absolute permeability.

¢ = a constant of dimensions of velocity and numerically

equal to the velocity of light in free space but not
uniquely identified with 1t.

This confusion may be further complicated by choosing in the
Electrostatic system [ke] = 1, in the Electromagnetic system [km] =1
and in the Gaussian system [ke] = [km] = 1, producing the so called
"absolute" systems. This essentially reduces the number of fundamental
quantities by one, resulting in incomplete systems and adding confusion
in checking equations for dimensional homogenity. The present trend is
away from incomplete systems and toward the Electrophysical or Practical

systems,

The Practical systems are by far the most convenient for
electromagnetic calculations, but are difficult to combine with the
popular mechanical dimenslonal systems. They are used extensively in the

engineering literature.

A table showing the dimensions of the various electromagnetic

quantities in the Practical and the Electromagnetic systems is givén.

The rest of the discussion will be limited to these two sys-
tems of dimensions, the Electromagnetic and the Practical systems. The
Practical system will be developed as a comprehensive unit system using
L, T, M and R. Actually, instead of R, which 1is difficult to standardize
experimentally it has been suggested and adopted to set the value of

absolute permeability to exactly 10'-7 henry/meter (in the MKS unit
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Dimensions

Physical Quantity Symbol Practical Electromagnetic
length 1 ' L L
time t T T
mass m M M
force £ ML T2 ML T
energy E M1t 72 M 12 172
electric charge Q Q wi/2 (172 -1 k;1/2
current 1 Q 1 M1/2 L1/2 1 k;1/2
voltage v IR M1/2 13/2 =2 k;/2
resisténce R R L1/2 =1 K
magnetic flux ¢ IRT Mi/2 13/2 -1 k;/z
induction B IrL-2p M/2 Y21 k;/z
magnetizing force H IL wi/2 ;=12 -1 k;llz
magnet;motive force F I Ml/2 1 1/2 -1 k;l/z
reluctance R_ gl 1 L1 k;l
abso. diel const A Ll R k;l
absolute permeability II R L—rl T k

system), In the rationalized form of this system this becomes 41 x 10_7

henry/meter. The factor 4m is here (i.e., the system is rationalized)
in order to simplify the electromagnetic equations rather than simpli-
fying the Coulomb's law of attraction. The term "Practical" is used
here in the sense that the engineering quantities volts, amperes, ohms,
henries, farads, etc., become the units in the system and have their
usual magnitudes. Some other familiar quantities such as density of
water (1 g/cc) however become 103 kilograms/m3. The rationalized sys-

tem further requires the use of Hy the permeability of free space to
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have a value different from 1, that is, equal to 47 x 10—7 henry/meter
and requires its presence in the electromagnetic equations. This can
be looked upon as an advantage, however, in that it clearly points out
the difference between B and H. Thus in a vacuum B = Hon® The units
of B being webers/m2 and those of H amperes/meter (or ampere/meter) and

the numerical values of B and H being different by the factor 4m x 10_7.

Units and Unit Systems

In the foregoing section the use of units unavoildably crept
into the discussion in places. Direct discussion of units will now be
undertaken. In order to measure a physical quantity it is necessary to
compare it with a like physical quantity. The reference physical quan-
tity is referred to as the "unit" of that physical quantity and the
"measure' is then a ratio (a-purely numerical factor) of the unknown
amount to the "unit" measure. Since the "unit'" chosen may be arbitrary,
an infinity of possibilities exists for choosing the unit. Now since
like physical quantities are related only by purely numerical factors
there is only one dimension for each physical quantity but many units.

A dimension system 1s chosen and then for each dimension in that system
a specific unit is chosen. These units become the fundamental units

and by means of the relationships in the dimension system every physical
quantity can then be expressed in these units. For each dimension sys-
tem an infinity of unit systems can exist but in order to achieve wide-

spread understanding these have been limited to a few.

Aswas pointed out previously, three dimensions and hence three
units are required for a mechanical system; plus one for heat or tem-
perature and one more for electricity. A dimension system and unit
system comprised of 5 fundamental units which can be used throughout the
whole field of physics is termed a comprehensive unit system. If the
units are metric it is a metric comprehensive unit system. Eﬁen then
we find eleven comprehensive metric systems in general use and some of
these have modifications. In addition to the modifications in the units,
we can have a unrationalized system, a rationalized system, a partially

rationalized system or a symmetric system. The Gaussian (cgs) system
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is a symmetric system and here the dielectric constant of free space

is chosen as exactly 1 stat-fard per centimeter and the permeability of

free space is chosen as l-abhenry per meter.

This factor is numerical-~

ly the same as the velocity of light in cgs units but is a numerical

factor only.

In that case all electrostatic and current quantities

appear in electrostatic units and all magnetic quantities appear in

electromagnetic units.

tions.

few of

the comprehensive systems.

This system is widely used in European publica-

Below is a table showing some relationships between a selected

Unit CGS CGS CGS MKS MKS
System Electrostatid Eleotromagnetic |
Author Gauss Maxwell Glorgi
Dimension (Ratlonelized)
System Symmetric Eleotrostetiq Eleotromagnetioc | Practiocal Practiocal
Quantities (sym)
Length L cm om om meter meter
time t sec sec 360 seo seo
me.ss m gram gram kilogrem kilogram kilogram
force £ dyne dyne joule/m newton = j/m
charge Q | statcoulombg| stateoulomb abcoulomb ocoulomb coulomb
current I | statampere |[statampere abampere ampere ampere
resistance R | statohm gtatohm abohm ohm ohm
voltage V | statvolt statvolt . abvolt volt volt
megnetic flux ¢ | stetweber stetweber maxwell weber weber
m. flux density B | gauss stetweber/om gauss weber/m2 weber'/m2
megnetizing force H |oersted -— oersted amp/m amp-turn/m
magnetomotive force F | gilbert - abhenry amp-~turn amp-turn
permeability p | ebhenry/om | stathenry/om abhenry/om henry/m henry/m

The dimension systems and units systems which will be used

in this paper are presented on the following page giving the conversion

factors from the one system to the other.

paper will be given in both systems.

in the same row are equal.

This will be our working table.

Formulas presented in this

In the following table, quantities
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Absolute Practical

cgs
Physical or Rationalized Electromagnetic
Quantity Symbol Practical MKS Units Nonrationalized Units
length 1 1 meter 100 centimeter
mass m 1 kilogram 1000 grams
time t 1 sec 1 sec
force £ 1 newton 105 dynes
work W 1 joule 107 ergs
energy U 1 joule 107 ergs
power P 1 watt 107 ergs/sec
charge q 1 coulomb 1071 abcoulomb
current iorI 1 ampere 10-1 abampere
voltage v 1 volt 108 abvolts
resistance R 1 ohm 102 abohms
capacity c 1 farad 10~9 abfarads
magnetic flux ® 1 weber 108 maxwells
magnetic induction 2 4
(flux density) B 1 weber/m 10" gauss
magnetizing force -3
(magnetic field) 1 amp-turn/m 41 x 10 7 oersted
magnetomotive force F 1 amp~turn 4m/10 oersted '
reluctance Ry 1 amp-turn/weber 4r x 10™9
pole strength Pm 1 weber 108/4m maxwells
inductance L 1 henry 109 abhenries
permeability of :
free space Yo 4t x 107 henry/m unity
permeability u dimensionless gauss/oersted
constant

Notes: a) 1 volt-sec = 1 weber

b) 1 henry = 1

weber
amp-turn

¢) quantities in same row are equal, t.e., 1 m = 100 cm.

These two systems of unity will be abbreviated as (MKS) and (CGS) respec-

tively and placed in Brackets next to the formulas used where necessary

to identify the system of units which must be used in the equation.

In order to convert from units from one system to another it

is necessary to multiply by the appropriate factor.
obtained from the table.

- 16 -
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their dimensional ratio is unity but their unit ratio is the value in
one column divided by that in the other. The conversion factor is this

rqtio and is dimensionless and equal to 1 (unity) dimensionally. Thus,

we see
1l meter = [1] = 100 centimeters
100 centimeters 1 meter
1 weber/m2 - 1] = 104 gauss
104 gauss 1 weber/m2

Thus to convert a value of B (magnetic induction) in (MKS) of 10 weber/m2
fo the appropriate number of units (CGS) gauss we multiply by the unit
factor which will cancel the unwanted units leaving the wanted units and
having -the proper numerical factor. Note the unity factor can always

be inverted.

4
lO_ggberfﬁz’x 10 gauss 10 x 104 gauss

bers
B =10 X225 4 [1] =
n? 1 web§f752/
= lO5 gauss (the MKS units cancelling)
5 5 1 weber/m?  10° 2
or B = 10” gauss x [1] = 10" _gauss x = weber/m

10* 1;nnﬁ?“"104

10 webers/m2 (the CGS units cancelling)

This method of converting from units in one system to those in another
is the most simple and foolproof known. It takes care of numerical
factors and units at the same time. It is only necessary to have a
table with equality between units. Any number of [1] (unity) factors
may be used in a string without difficulty, The simple example below

should suffice to illustrate the method.

Thus to convert 1 yard to cm.

_ 3 feet

12 inches
" 1 yard °’

_ 2.54 cm
1 foot °? [1]

[1] = = T inch

unity factors: [1]
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L =1vyard x [1] x [1] x [1]
_ r 3 feet 12 4nches _ 2.54 cm
L=1 ¥ 1 yard * "1 foet- * T dmeh
=3x 12 x 2.54 cem
all units cancelling except
L = 91.44 cm cm, leaving the proper numer—

ical multiplier.

As was mentioned previously a formula or equation in a
rationalized system will be different from one in an unrationalized

system even when the same units are used in both systems.

A tabulation of a few frequently used magnetic equations in

the MKS rationalized and the CGS EMU unrationalized systems are given

below.
Physical Situation Equation
u T 7 -
H = Z% I x2d1 ami t MKS)
Biot—-Savart Law r
Field due to element - _
of current H= I—Eiél oersted {(CGS)
T
u I.1
F = E% 12 newtons/m (MKS)
Normal force per unit length u
between infinite parallel 1112
currents Fu = 2 - dynes/cm (CGS)
W
- o nl
Flux density at center B = 2 r webers (st)
of n turn circular coil ol ;
in air B = 2m L Bauss (CGS)
Flux density inside B = uonI webers (MKS)
infinite solenoid
n turns/unit length B = 4mnlI gauss (CGS)
__d
EMF induced in conductor v dt volts (MKS)
by rate of flux change d
V=- E% ab volts (CGS)
"ohms" law for magnetic F = ¢R (MKS & CGS)
clrcuits
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CHAPTER 3
MAGNETIC FIELDS AND MAGNETIC FLUX

We are now in a position to discuss the production of a mag-
netic field.,

Let us first note that we can make some analogles of magnetic

fields with simple electric circuits with which many are familiar.

In an electric circuit we have a voltage or electromotive
force (E) producing a current (I) through a resistance (R). Similarly,
in a magnetic circuit we have a magnetomotive force (F) producing a

flux (é) through a reluctance (Rm).
E = RIL =
F=R¢

In the electric circuit the current is generally confined.
inside' the conductor, in the magnetic circuit this is in general, not

true,and we have to carefully define the region in which the flux occurs.

The specific magnetomotive force per unit length is called

the magnetic field or magnetic field strength and sometimes just field.

It is denoted by the letter H. The specific magnetic flux
or flux density is called the magnetic induction and is denoted by B.

The formal definitions are as follows. The magnetomotive force F is:

F = ﬁ H-dl and hence H is a vector with direction and
magnitude and units of magnetomotive force
per unit length.

We associate H with a current i in such a manner that the following is

true:

$ Hedl = 1 (MKS) § Hed] = 4mi (CGS)
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As a different way of looking at the magnetic field which is
exactly equivalent to the above, we can argue 1in this way: Ampere per-
formed edperiments which showed that the force between current carrying
segments of wire varied inversely as the square of their distance apart
and directly as the currents in the segments. He further determined by
experiment, that the force experienced by a wire carrying a current is

always normal to the wire,

In the figure below these relations are diagrammed.

Gn‘x (d-ﬂ.,_x T‘)
. TR
e FH?

-— 4l x¥

dl,

ho

2

current element 1 is written 1iEIl

current element 2 is written 15512

The magnitude and direction of the force is described Succinctly
as the vector product A x B = (ABsin®) c = C, where 6 is the angle between
A and B, (ABsin6) is the magnitude of the vector product and c is a unit
vector perpendicular to both A and B and so directed that a right-hand
screw advancing in the direction c would rotate K'through the smaller

angle into the position of B.
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Thus,

6 (AB sin0) €

We now can write the equation which describes the elementary
force of 12dl2 on 1ld1l . . _
dll X (dl2 X rl)
1 172 2
r

where

;l is the unit vector in the direction element 2 to element 1,
and

K 1is a constant of proportionality.

In practical rationalized MKS units, K is chosen as uo/4n and
in CGS electromagnetic non-rationalized units K is chosen as 1. The

above equation can be written as:

~ = po . = -
df = 1ldll X g 12dl2 X 1y (MKS)
— Hy  — —_ —
From this we now define de = 12dl2 X ry and dB2 is the magnetic

flux produced by iéaiz to produce the force df. If we are in a material

of permeability un then:

MM
_ 0 — —
dB = T idl x 1 (MKS)
dB = p idl x _1 (CGS)
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If we have a single current carrying conductor stretching from
~o to +» we find a dB surrounding the wire coming out of the plane ©®
above the wire and entering the plane below the wire @ and at a dis-

tance a from the wire.

If we now integrate dB for all elements of the wire, or com-
pletely around the closed loop (of wire) (closed through =) we have for

the field around the wire

B = uz;’rl $ z erl (MKS) B = pi gS————dl x_zrl (CGS)
r T
where
dl x ;i = dl sin®
a=r sinb
r2 = a2 + 12
dr = dl
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s0

oo

B = uuoi J adr - 2ui 1 ® (MKS)
4w ) (a2 + 12)3/2 4ra (aZ + 12)1/2 . .
2up i
= _ o) = _ 2ui
B = ina (MKS) B = (CGS)

we may also write

2

[

=21 (ms) ana ®=2L (cos)
4ma a
since
H = B/uuo (MKS) and H = B/u  (CGS)

This result (or the integral form above) is known as the Biot-Savart

law and is of great practical importance. It is from this and
lowing calculation that practically all useful magnetic fields

termined.

A special case, essentially the inverse of the above
now described. Here the current-carrying conductor is bent in

of a circle (a loop)and the magnetic field 1s calculated along

the fol-

are de—~

is
the form

the axis

of the loop. Note, however, that it is not easy to determine the mag-

netic field off the axis. This problem will be discussed later.
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Now by symmetry each idl will
metric amount of B to the axial B hence

to the axis vanishes and

now H X ;l

perpendicular to';i, so Ei'x‘?l =

= dl sin®, but sinb =

along the axis hence:

(MKS) B

contribute an equal and sym-

the component of §'perpendicular

dl x
, , 1
“195_2’
T

(CGS)

sin 7/2 = 1, since dl is everywhere

dl and dB cos¢ is the component of dB

. 1=27b
= ﬁ cos¢dB = o cos¢dl cost ; b/r2 2
axis 2 and b" + x =r
by r
o
S0 .
- MJo1 21rb2
axis 41 (b2 + x2)3/2



and

uu 1 2 2
0 b _ , b
= (MKS) B = 2mui 5 x2

B
axis 2 (b2 + x2)3/2 axis % +

)3/2 (CGS)

Again we have a very important practical result, This result can be

used immediately. We may rewrite the equation as follows:

Since
B = uuoH (MKS) B = uH (CGS)
then
2 2
B i b _ B _ b
axis " W) T2 2, 23]2 (MKS) H o je =y = 2™ % 1 2532 (ces)

Now let x = o and call the field along the axis at the center of the

coil H
o

_ i _ 27
Ho =3 (MKS) Ho =5 (CGS)

and form the dimensionless quantity H/H0

H ) b3 H ) b3 :Z;Zhazze the
Ho (x2 + b2)3/2 Ho (x2 + b2)3/'2 dimensionless

in both systems
and finally

N CER

A plot of H/H0 vs x/b (also dimensionless) gives us a universal curve

m|m

for the field on the awxis of a single loop of wire. If many turns of
wire are used in the loop, it is still valid, the only assumption being
that the cross sectional dimensions of the loop are small compared to

the radius of the loop.
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x/b H/Ho

o I.oo00

.25 .915

.50 | .716

I8 | .St
(.00 | .354
1,23 . 244
1.60 | 171 ! .
2.00| ,089 X

b

This exampie is being explained in considerable detail since
the general principles involved are similar to those which will be en-

countered in more complicated coil arrangements.

We can see that the slope is practically constant in the re-
gion around x/b = 1/2., We can make use of this fact to produce a uniform

or nearly uniform H.

Now, if the first derivative of a function can be found to
have a constant value its second derivative will be zero and the value

of the argument (x/b) can be found which will make the slope constant.

Let us now find dH'/dx', d2H'/dx'2 where H' = H/H and x' =
’ o

x/b
1 1
H/H = then H' =
o ((%)2 + l)3/2 (X'2 + 1)3/2
%g; = -3/2 (x'2 + l)_s/2 2x!
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and

2 !
CH _ ap[osz a2+ )T e+ o+ 72
dx?"2
Setting this equal to zero and factoring out the common factor -3/2
«'? + 172 ye find
5x'2
7 =1
x'"+ 1
and
X'2 = 1/4 or x' = 1/2
This gives us
x/b = 1/2

At this point, along the axis, the field is decreasing at a constant

rate.

If we now position two coils one to the left of point P a
distance of x/b = 1/2 and the other to the right of point P a distance
x/b = 1/2 we will obtain a field which is the sum of the fields of two
coils. This arrangement of loops is called a Helmholtz pair. It is one
of the first and relatively common and simple ways to produce a uniform
field of a reasomable extent. It produces the largest uniform field
if the two loops are of equal size. Other configurations using more than
two loops of the same or different sizes can be more efficient, that is,
give a greater volume of uniform_field, for the same exterior dimen-

sion of the loops.

At the center P (and approximately so to each side of center)
the decrease in the field of the one loop is exactly compensated by the
increase of the field of the other loop leading to a uniform field be-
tween the loops and becoming less uniform as we move farther from the
center P, The slope of the field at the center of a single loop is also

zero but as can be seen from the previous figure changes rather rapidly
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as we move away from center, The field for a Helmholtz using the data

just calculated for a single loop is shown in the next example.

Helm holta PRair of Loops
Spuced One Radivs Qpart

b "R T (] I T T B distonce from
L lo| b b, b [bl S8 84, 20 left-hand leop

¢ L ,

P
(R TR T T 'Y S T TR W '
2b 3 ﬂ,{,t Shy b, by o distance from
u right- hand loop

The field from the left hand loop will decrease to the right and the
field from the right hand loop will decrease to the left. The two fields

will add to give a nearly uniform field. Thus, from our table we have

Distance from Distance from H/H, Distance from H/H, Sum of H/H,
P (x/b) Left Hand Loop IH Loop Right Hand Loop RH Loop Left and Right
-1.5 (1.00) (.354) 2.00 .089 JUh3
-1.00 (0.50) (.716) 1.50 171 .887
-0.75 {0.25) (.915) 1.25 L2ulh 1.159
-0.50 0.00 1.000 1.00 354 1.354
-0.25 0.25 .915 0.75 .512 1.42y
0.00 0.50 716 0.50 716 1.432
0.25 0.75 .512 0.25 .915 1.427
0.50 1.00 354 0400 1.000 1.354
0.75 1.25 .24 (0.25) (.915) 1.159
1.00 1.50 171 (0.50) (.716) .887
1.50 2.00 .089 (1.00) (.354) Al

where the values in brackets have been filled in by symmetry and the col-
umns have been adjusted vertically so that the field from each coil falls

at the point P.
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A plot of the first and last columns shows the uniformity of
the field on the axis of the loops.

‘o‘ 9

o 2 +X/p

' ) I ' 3 3 4 3 A Y 3. L

.o (25 Loo .75 .50 .2§ ‘: .2% .50 .JS 1.00 2§ LSO
(left of P) mid I point (right of P)
between loops

center of center of
left (oop right loop

It can be seen that in the region from -0.25 to +0.25 the

field along the axis is quite uniform.

To find the point where the combined field falls to 99% of the
field at point P we let:

H '+ H' .
L R _ 0.99 subscripts L and R stand
2H0' : for "left" and "right"
HL' + HR' = (0.99) (2) (.716)
= 1.417
where
1 1
Hl= HI=
L (x'2 + l)3/2 R «Q - X,)Z + l)3/2
then

1

((1 } %)2 N 1>3/2 = 1.417 '(’(%>2 " 1)3/2

- 30 -



Since this is a bit difficult to solve algebraically we can tabulate a
few values in the vicinity of x/b = 0.25 and plot them on an expanded
scale we can find where x/b makes this true. This will then be the

extent of the 1% region.

Let
1
= A
(@ - x/py% + 1)3?
1
= B
(x/b) 2 +1)3/2
Then

x/b A B (1.417-B)

.15 .443  ,966 0.451
.20 476 .943 0.474
.25 .512  .914 0.503
A
320 ¢ ‘ .
L1748 A,
.500 L417-B
H6O
4
nq¥° o ¢ b
A8 20 .23
l
GI183)

This gives x/b = 0.183 where the field is 997 of center field.
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Putting this value of x/b in our equations for the combined
field we find:

1 1
'+ H = +
TR T )32 T a2, 3
(.183% + 1)3/2 (8172 + 1)3/2
= .951 + .461
= 1.412
. , 1.412 o
which is 1.432 0.986 or 997 of field at center as required.

If we had a pair of loops each with a one meter radius
(b = 1lm), spaced 1lm apart, a uniform field (within 1%) would exist on
the axis from .317m left of center to .317m right of center for a total
length of .634 meter.

For a field uniform to say 0.17 we would naturally have a much
smaller distance within this uniformity. But note that the length of
the useful field for a given uniformity is proportional to the coil
radius. Thus a pair of coils 10 cm radius would have a useful length of
6.34 cm,

In the illustration above we made the assumption that the cross
section of the loop winding had dimensions that were very small compared
to the loop radius. That is the current that was essentlally a line.

In some cases it may be necessary to have a considerable number of turns
taking up a considerable amount of physical space. If these turns are

on a cylindrical surface only one of the turns can have the proper spacing
from the center. In order to compensate for this, the winding should be
on a conical surface so that the radius of each loop will be twice its
distance from the center of the palr of coils. This is, the distance
between corresponding turns on the two coils should equal the radius of

these turns. This is illustrated in the following figure. Here the
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radius of each turn as 1t is farther removed from point P 1s increased
in radius sufficiently to keep the ratio b/%/z = 2. The uniformity is
then maintained as well as it would be 1f only the inner turns were

considered.

o

¥ K

The turns will be in the proper proportion if the bobbin (on which they

are wound) is as shown with tan 6 = 2, 8 = 63.43°.

Calculations of Field Off-Axis

5
Note that all the foregoing calculations of the field from a

circular loop were restricted to the field on the axis of the loop and
the uniformity was considered along the axis only. It is now necessary
to consider how the field varies off the axis. This cannot be done in
any simple way and for this reason is usually left out of most elementary
texts and when found in advanced texts 1s obscured by the derivations.

In general, the off-axis field is given in terms of complete elliptic
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integrals of the first and second kinds or of Legendre functions. A

(1)

complete discussion may be found in Smythe on the use of Legendre

functions.

An article by Blewett(z)

develops the off-axis field in terms
of elliptic integrals and contains a set of tables useful radially out
to twice the radius of the loop but extending along the axis only to
0.36 times the radius, which limits the usefulness. (Note: formula 5
of this paper is in error and should have (1/2)2 as coef, of k2 rather
than (1/2)). Dwight(B)

extended solenoids in terms of Legendre functions. These formulae give

develops several formulas for both loops and

the magnitude of the field components in the x and y directions and hence
are quite useful, whereas, Smythe gives the components in terms of the
radius vector (r) and (8) directions. Formulas are given for the entire
plane, both where the point of interest is farther away or closer than
the loop radius. A large number of formulas is also given by Dwight(4)
in a later article for the off-axis field near cylindrical coils or
solenoids. He develops these in Legendre functions, elliptic integral
functions and in rapidly converging infinite serles with recommendations
of those most useful in various special regions around the coils. In
the same journal in a discussion of Dwight's paper, Welch(s) presents
sets of useful curves for flux density around cylindrical coils. Where
great accuracy is not required the information can be obtained quite
quickly from these curves.

Probably the best reference for practical calculation of mag-

6)

netic fields (from tables) is Hart In the introduction to his volume

he states:

"To evaluate the magnetic field of a circular current

at an arbitrary point in space has often been a tedious
process. The formulas ... are rather involved expres-
sions ... a separate evaluation of the magnetic field

at each desired point in space must be performed ...

the task may involve considerable labor. The purpose

of the tables ... 1s to reduce to a bare minimum the

time and effort required. ... The procedure consists

of adding ... the tables apply to all ... distributions.”
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These tables are far more extensive and of a finer subdivision
than any tables published previously. Any circular coil (or number of
coils) can be easily handled. For regions where the field is nearly
uniform an accuracy of better than 0.017% is possible. Overall the
accuracy 1s better than the accuracy to which the coll dimensions can
be measured. The fact that distributed currents are included makes
possible the accurate calculation of the fields from colls of finite
(and practical) and even large winding cross section size. The calcula-
tions for eal coils with eal dimensions can thus be done with greater
ease and accuracy than could previously be done for idealized coils.

In addition, both the radial and axial fields are given for both on- and
off-axis, thus making possible a true knowledge of the uniformity of

the field in a real, practical region of interest to the experimenter.

A typical calculation to illustrate the complexities (without
tables) of an off-axis calculation is given below. It will use the same

coils as for the Helmholtz coil calculation previously given.

In general we wish to find the off axis field at the point Q.
This will consist of the field from loop 1 plus the field from loop 2.

Point Q is distant from loop 1 by the radius vector r, at angle ©

1 1

similarly r, and 62 for loop 2. Since loop 1 and 2 are at a fixed

2
distance apart (b in this case) we have:

cosel = xl/rl cos 62 = x2/r2

and
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P RT
. CRSQh:f?%AT
| Q b
IR L 74N cos®, = M,
I
- |_ r 8 - and
AN
'Z.+X¢_=b
b
(o] (o]

Adapting formulas (5) and (6) from Smythe pg. 271, we obtain:

1 to = n+1

i n-1
r __1 .y 2 1.3.5...n -
H . 7155 Z -1 2.4.6...(n-1) (b) p, (cos 6)
or
n odd
1l to « n+l
H n-1
o .1 E: 4y 2 __1.3.5...n (r ,
H .7155 1 n.2.4.6...(n-1) (a) p_ (cos 6)
or
n odd
where H0 = field on axis at r = b/2.

The field components have to be calculated for each loop at

the point Q, the x and p components calculated and the two added, giving an:

H/Hor along x and a H/Hor along p

The field from loop 1 will have components in the r1 and 61

direction; loop 2 will have components in the r, and 62 direction.

These will have to be summed along the x and radial (¢) direction.
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If for convenience of calculation we choose the point Q above
the center point p by the amount x/b = 0.5, we will have cos 91 = cos ©

= cos ({J = V/2/2 1.e., 6 = 45° and the 0 components will cancel by

symmetry.

2

The factor .7155 having been obtained by a previous calculation
and is the value of the field from one loop‘on the axis at a distance
equal to b/2, we now need to know the values for Pn (cos ©) and Pé (cos B).

Pn (cos 8) and Pé (cos 9) are defined as follows: let cos 8 = u

Pl(u)v= u Pi(u) = (l-uz)l/2
P,(b) = 1/2 (3u’-1) Py =3 -uHM2
PLGw) = 1/2 (u-3w) i) = 3/2 @HM? u-)
4 2
P, () = [35“ e 3] P (1) = 5/2 -2 gu3-30)
63115 - 7Ou3 + 15u 15 2.1/2 4 2
P5(u) = [ 5 ] Pg(u) =3 (1-u™) (21p" - 14u” + 1)

1/2.d

2
) Em Pn(u), for -1 < u < + 1.

and in general P;(u) = (1-

The recurrence formula for Pn(u) (see (8) pg. 334) or
(Smythe (1) pg. 150) is

mo_ m o m
-(m-n - 1) Pn+l (2n+1)qp Pn (m + n) Pn-l

The recurrence formula may be used to obtain numerical values
of Pn and Pé quite accurately (except near zeros of Pn and P;) as well

as to generate the analytic form of Pn and P; for higher values of n.

Thus

_ 2ntl _.n
e L T I
and
2n+1 n+l
v v - DL o
Pn+l n Pn n Pn—l



The values of Pn and P; are not particularly easy to come by

as tables do not generally include both Pn and P; nor do they usually give

values for n over say 5.

It was necessary to calculate most of the

Pn and P; values shown in the table below directly from the recurrence

formulas. WNo guarantee of accuracy is claimed.

For 17 accuracy probably

at least two more terms should be computed but these values will illustrate

the procedure.

Table of Values for Pn(u), P;(u) (r/b)n_1 and Numerical

Factors for ¥/b = vV2/2 u = /2/2
P n-1 E%l Product
n n (z/b) factor (-1) of term. Sum
1 .70711 1.00000 1 -1 -.70711
3 -.17678 0.50000 3/2 +1 -.13258
5 -.37565 0.25000 15.8 -1 +.17608
7 +.12681 0.12500 35/16 +1 +.03467
9 +.28511 0.06250 315/128 -1 -.04385
11 -.10394 0.03125 693/256 +1 -.00879 -.68158
pt n-1 E%l. Product
n n (x/b) factor (-1) of term. Sum
1 70711 1.00000 1 -1 -.70711
3 1.59099 0.50000 1/2 +1 +.39775
5 -0.94437 0.25000 3/8 -1 +.09322
7 -2.35888 0.12500 5/16 +1 -.09214
9 +1.22326 0.06250 35/128 -1 -.02095
11 +2.93214 0.03125 63/256 +1 4+.02255 -.30664
From these values we can obtain
H/H = - —+e (-.6816) = +.9526
r “or .7155 : -t
H/H =+ —— (-.3066) = - .4285
8" or . 7155 '

These are the values

loop (loop 1).
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For both loops the x and p components are given below:

loop 1 loop 2
Components — X p X P
Hr/Hor .9533 cos®, .+9533 sind (+.9533) (+cos0), +.9533 (-sinb)
He/Hor ~.4288 (-sinb), -.4288 (4cos®) (-.4288) (-sind), -.4288 (-cosb)
cos® = siné = ¥2/2 = .707

With the signs chosen for the appropriate directions.

Adding components in the x and p directions
total

H /H _ = 1.9532

X or

Hp/Hor =0, that is, at this point the field is horizontal

or parallel to the x—-axis.
This compares to the value of Hx/Horat P (i.e., on the axis
below Q) which is:
H /H = 1.432
x or

or

H —_
100 x _gﬁ__fg_ = 26.7%
P

H, is 26.7% greater than H

Q P’

If we do this same calculation using the Hart tables the

work 1is greatly simplified and the chance of error is greatly reduced

because fewer calculations are required.

Thus, for one loop,
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®
T ™ .
b Q
s B T B,
L] gss 4
T <~

1n notation
previously used

5

then form: 2Z z/h
R = r/h

table is in Z and R coordinates.

Thus = 1/2b
h=1/2b
r=>
Z=1 R=2 Enter table III (Hart).
and obtain FZ = 217.29 BZ = KI/h Fz
FR = 80.84 BR = KI/h FR

We must also obtain the field at P(ours), O(Hart) here.

z =1/2 h =0. This requires the use of Hart's table IV in terms of W.

r=>
z =1/2b
W=r/lz=2
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G = 449.59
B, = KIG/r = KIG/b where I = current
K = constant factor
Forming the ratios as before
By BB _MRE b H o B
BZO HD Hor KI/b G h G b/2 G G
Hr FZ
R 2 e for one loop.
or
or
Hr FZ
7" 4 o for two loops.
or
HG FR He
Similarly, T 2-6— for one loop and because of symmetry T 0
or or
for two loops.
_, 217.29 _
Hr/Hor =4 449,59 ~ 19332

This compares to 1.9532 the value obtained by the summation
of the two series in Legendre polynomials the small difference being due
to the fact that only 6 terms (odd, 1 thru 11) were summed. It can be
seen clearly that the amount of time required using the Hart tables is

only a fraction of that required in finding the series sum.

The Hart tables can be used for a distributed winding of
rectangular cross section and circular symmetry (cylindrical) of any
relative size in a similar fashion. The only complexity added 1s that
four values have to be determined (essentially one for each cormner of
the coil) and combined by well defined simple rules in order to deter-

mine the radial and axial field components.
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Using the Hart tables, a plot of values of the field for a
series of points can be made and the region of desired field uniformity
can be determined to a first approximation by inspection. Thils can
then be improved by the calculation of a series of additional points

in the region of interest.

Some useful information on Helmholtz colls has been reported

by Wolff(9). He gives the following regions of uniformity.

T TT T

=24y

_/ '

Spherical region Cylindrical region
r = 0.1R 0.02% uniformity 17 uniformity
r=0.2R 0.27 wuniformity 1 =0.6r r = ,25R
or

1 = 0.47 r = 0.35R

5% uniformity

1.0r r = 0.4R
or

1 =0.5r r = 0.5R
0.1% uniformity
1=20.2r T 0.2R

-
I

or
1 =0.3r T
- 42 -

0.15R

]



The assumption is made here that the coil cross section is
very small compared to the coll diameter. This is not a restriction

where utilizing the Hart tables.

A calculation for a practical size Helmholtz pair of coils,
circular and spaced one radlius apart, of finite size coil cross section
is given below. The calculations are done using the Hart tables and
the details of the calculation are not shown. The resulting field at
four points is given. The region chosen is much larger than is generally

chosen for a Helmholtz pair and therefore may prove useful.

g 8 d = 50 em (coil dia)
c A K3 s = 20 cm (coill spacing—inside)
1 =5 cm (coil length)
t = 0.90 em (coil thickness)
A A" A 1 § d h = 10 cm
;{ I = 1.0 amp (current in coil)
LI N = 50 each (number of turns)
I "o wire size #19 enameled.
v

[ohsfe—s —=

109.65 amps/cmz.

J = current density in coil = N

|

Coordinates of points where field is calculated (origin at

center of coil pair).

Point Z r=nh
I 0 0
II 0 10 cm
III 10 cm 0
Iv 10 em 10 cm
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1"4—}_
3

Entarged
Cot/l Section

Z measured from points I through IV to corner points A through D.

r measured from coll axis to points A through D.

The flux density calculated at the points I, II, III, and IV

is given below. BZ is in the axial direction and Br is in the radial

direction.
Bz (gauss) Br (gauss)
Point I 1.788 0
II 1.757 0
III 1.739 0
Iv 1.834 .056

If we consider point I (at the center of the pair) as the

point from which we compute deviations we find,

Point II 1.7% low
I11 2.7% low
Iv 2.6%Z high

and a radial field at point IV amounting to less than 1/30 of the

center field.

- 44 -



This shows that if an inhomogeneity of about 37 can be tolerated
a very large volume is usable inside a Helmholtz pair. The cylinder
length extending from the face of one coil to the other in this case
is equal to 40% of the coll radius and with a radius equal to 20% of

the coil radius.

For better than 3% homogeneity we have a cylinder; 1 = 0.8R,
r = 0.2R.

The absolute value of the flux density can be adjusted to any
desired value by adjusting the current in the coils, subject only to

overheating of the coils by 12R losses.

Other Coil Confiqurations for Uniform Fields (more than two loops)

So far we have discussed only the very simple configuration
of a single loop or two loops placed with their centers one loop-radius

apart, the so-called Helmholtz configuration.

This configuration produces a region of relatively small volume
of uniform field compared to the total region occupied by the two coils.
By the addition of more loops it was realized long ago that a greater
relative volume of uniform field could be produced. This comes about
by the fact that more parameters are available for adjustment (such
as loop radius, loop spacing, loop current and number of loops) to

obtain the desired uniformity.

Many different configurations are possible once we allow
multiple coils. Most of these utilize circular coils of varying spacings
and numbers of turns. One interesting configuration which is non-
circular is the square five coil arrangement known as the Rubens coil,
Rubens(lo). This configuration has five equally spaced square colls
in line, forming a cube. The number of turns on each of the coils is
then selected to give the largest possible region of uniform field in
the interior. A relatively simple derivation is employed to obtain the
required number of ampere-turns for each coil. By choosing different

criteria for uniformity many different sets of values for the current-

turns ratio may be found. The particular set chosen for computation in
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this paper is 19:4:10:4:19. If the coils are series connected the

number of turns in each coil 1s then made proportional to these numbers.

Y

7
[ty —|

Schematic arrangement of Ruben's Coil.
Integers are proportional to the ampere-turns in each loop.

If x and y are measured as shown, the ratio of the fileld at
x and y to that at the center is as shown in the table abbreviated from

Rubens.

Table of H /H
xy' 00

y/(d/2)— 0 0.2 0.5
x/(d/2) 0 1.000 1.003 1.009
0.2 .9997 .9995 .997
0.5 .9990 1.0005 .996

As can be seen over this whole region, the field does not
deviate from that at the center by more than 4 parts per 1000 or 0.47%.

For a 17 deviation he shows that the volume of homogeneity can be about
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seven times greater for the cube coil than for a Helmholtz pair of the
same diameters as the cube coil edge (d). Similar comparisons are made
for other percent deviations. The analysis given by Rubens does not take
into account the finite size of the colls (distributed windings). Some
reasonable approximations can be made for the practical case which should
permit results very close to those given by Rubens. Discussion of

approximate methods will be treated in later sections.

Another interesting system using three circular coils having
the same coil-forms (bobbins) and of finite winding cross section is

(11). This paper is especially valuable because it

that given by Barker
considers carefully, very practical and significant problems such as

the wire size, the insulation size, the similarity of coils forms and
other fine points of coil winding and construction. A complete set

of formulae are developed taking into consideration just these points
and examples of their use in the construction of a real system is given.
The starting point of his system is given. The starting point of his
derivation is the standard expansion of the field in a series of
Legendre polynomials in which the coefficients of two of these terms

is made equal to zero (this will be discussed more fully later). A

diagram of the coil system is shown below.
]

. | _!__

—L. D

! =4,




A1l three coil-forms or bobbins are exactly the same. The center with

one-half the number of turns of the outer colls.

The uniform field reglon is roughly twice the linear dimensions
(approx. 8 times the volume) of a Helmholtz pailr using the two outer

colls.

Typical values for the extent of the fleld uniformity are given

in the table from Barker:

median |plane (thru 0)| along axis
uniformity 0.1% 1% uniformity | 0.1% 1%
y 0.411a 0.603a X 0.338a| 0.496a
max max

Approximate coil separation: X, = 0.76a.

Adjusted by calculation to give desired uniformity.

This 1is one of the very few articles which takes into account
the practical construction problems of a coil with finite winding depth
and length. It should be studied for this information even if a different

configuration is ultimately chosen.

E1lipsoidal Coil

A coll can be constructed in the shapé of an ellipsoid .of

revolution in which the magnetic field 1is uniform in the direction of the

@)

axis of symmetry throughout the whole internal volume, see Blewett

In cylindrical coordinates the equation of the ellipsold 1s:

2 .2

e Lz _
st =1

a

o’
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oxis ,;fé'c revalution

If the winding has constant current density and the wall thick-
ness in the radial direction is held constant (dp = c¢) by varying the
wall thickness the field inside will be uniform in the z direction. In
a real coil (dp)max must be very small with respgct to a or b, whichever .
is smaller for this simple condition to hold. A coil of this configura-
tion would be very difficult to build and since it completely envelops
the internal volume prohibits access to that volume. While two coils
(above and below z = 0) could be made so that the halves could be separated
the coil form along that surface would have to be of negligible thickness,
Blewett discusses configurations derived from this shape (pancake, sphere

and infinite solenoid), their energy storage and power consumption.

A comparison of cilrcular coil systems with from one to 8 loops

is given by Pittman and Waidelich(lz).

In this paper they also develop
the equations for coil size, spacing and current to achieve the maximum

uniform region in a four loop coil arrangement.
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It is pertinent here to glve a rather full review of the
numerous coil arrangements which they discuss because as far as I know

no other single paper discusses so many different arrangements.

Fifteen different systems are described; from a single loop
CAmpere5, two loops (Helmholtz), three loops (Barker, Maxwell and theilr
own "minimum'" solution, 4 loops (5 varieties), 6 loops (three varieties)

and 8 loops (2 varieties).

Their notation 1s somewhat different from that used elsewhere,

but involves the use of a Lengendre polynominal expansion of the magnetic

field from a loop.

-— loop

b, s

o

If the origin is at "0", radius of the loop b, sin «, the

1
distance from the origin to the center of the loop cos o = X, then the

magnetic field on the axis H is:

H= ) a, z" where Z is the distance along the axis

n=0 from the origin.
where
2
NI (1-x ) 1
0 T Phr1 X
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and dpP (X)

' - ntl
Pn+1 (X dx

ahd Pn(X) is the nth order Legendre polynomial with argument X = cos a

and P' is the derivative.
n+1

Two or more coils on a common axis may be used to produce a

more uniform or homogeneous magnetic field than is possible with one

coil.
For a symmetric four-coll system as shown in the figure.
o
o o
we have -
H = E a_z"
n
n=0,2
even
where
NI, (1-X%) NI, (1-X%)
a = _&_—2 P! (X) + il_z_
n n+l nt+l n+l
b1 by
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These equations are shown, not because they will be used by
us for calculation but rather to show the method of obtaining a uniform
field.

If we will write the equation for the magnetic field for
4 coils as below.
B _ 1+ a Z2 + a Z4 + a Z6 + a 28 + a Z10 o]

a 2 4 6 8 10
o

We obtain the ratio of the field at Z in terms of the fleld at
Z =0 1i.e., the origin. At the origin H = a . What we want then 1s for
H/ao to be independent of Z, i.e., H/aO = 1.

This can be accomplished to a very high degree of accuracy,
because of two féctors operating in our favor. Flrst, the serles is
convergent, each term 1s successively smaller than the one preceding it.
Second, several parameters are available which can be adjusted, namely,
the radius of the coils r, = b1 sin @, and r, = b2 sin o

1 1 2

by adjusting
o3 the separation of the coils xl=cos al and X, = cos a2 and finally,

NlIl and N212 the turns current product in the two pairs of coills. It

turns out that this number of parameters 1s just sufficient (for particular

2

values of these parameters) as 3y 8- and a, can be made zero and even make

4 6
some adjustment in ag to make it a minimum. Hence, we have
H _ 8 10
ao—[1+o+o+o+agz +ag gl ]
or
H 4 10
o= 1+ asz 1 approximately since alOZ etc. are very small.,
o

A similar situation exists for three coils. Here the two inner
coils are brought together to form a single center coil plus an outer

pair thus becoming effectively three loops.

A modified portion of the table given in Pittman and Waidelich

is shown below. The Barker 3 and 4 coil configurations are given in

- 52 -~



preference to several others because of the desirability of equal loop
diameters. Some of the other conflgurations have the loops on the surface
of a sphere or other non-equal diameters with little or no advantage in
the volume of uniformity. Very little advantage is gained by the minimum
configurations also given,compared to the Barker configurations while
complexity of construction is increased. The Barker configurations,of

3 and 4 loops are not as good as the Pittman and Waidelich configuration
since the a, and a_, terms are not minimum (in the 3 and 4 coil configura-

6 8
tions respectively) but the 855 8, and ays a, and ag terms are made zero.
By requilring equal diameter we do not have freedom to minimize the ag or
ag terms but we have the space and construction advantages of equal

diameters.
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Three of these coil configurations are shown in the same scale
with their approximate dimensions, spacing, and the extent of uniform field for
10_5 nonuniformity and 10_2 nonuniformity. For series connectilon I1 = 12
and turns ratio is shown.

The radius of all coils is chosen to be the same in the figures.

Hcl\mhoHi Boarkser Three Coil

' ¢ P P P

o> % Tl 4
1% 17

Na/u,= 3.7¢5

T T f T Barker Feur
7 Conl
';5 % NI./N' =2-261
1%
o Lo

The extent of the uniform field for the three configurations are, at 1%,

very roughly in the ratio 3/8/10 in the order shown for same loop diameters.

As can be seen from the table the Pittman & Waldelich configurations

for 3 and 4 coils are very smiilar to the Barker coils but the coll pairs are

slightly different in diameter.
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Now there are various relationships between the quantities
shown and those useful in constructing or designing a set of coils, these

are related to the figure shown.

T? b2 by

Then: x1 = cos al x2 = cos a2
r1 = bl sin o r2 = b2 sin az
d1 = b, cos o d2 = b2 cos o,

Z = b2 (constant for coils)
and from this

d, = r1/tan o d, = r2/tan a

1 1 2 2

and Z = (r2/sin az) (constant for coils)

The constant for the coils has to be determined from the
Pittman and Waidelich computation for the degree of inhomogeneity permitted
and for this equal to 10—5 the constant is given in the table. For other

values we must calculate the constant from the B values given in the table.
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The B's (B6 and BS) for the three and four coil configurations
can be used to calculate the extent of fileld (Z/bm) for any desired

homogeneity'AH/Ho as follows:

n
Z
% (5]
m

In the case of the Barker 4 loop configuration
let AH/H = .01 (1%), then B8 = 7.828.

AR
H

Then
z)®_ o1
b 7.828
m
and
1/8
_ _ .01
(z/by) = (2/by) = {7.828]
(Z/b2) = 0.435 for 1% homogeneity.
For the Barker 3 loop configuration
B6 = - 3.214 AH/H = .01
and

1/6
.01
3.214

0.382 for 1% homogeneity

(z/bm)

The 1% and 10_3% reglions are shown in the fipgure for Helmholtz
and Barker 3 and 4 coil configuration and are indicated by the dotted and

solid lines respectively.

Using these formulas and the abbreviated table given here three
or four coil configurations can be readily designed to obtain any size

field with the desired degree of homogeneity.
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Loops of Finite Cross Section (Distributed Currents and Approximations)

For the most part, the discussion of various loop configura-
tions has considered the windings to be of infinitely small cross sectional
area with the exception of the Barker Coils and the Hart tables. In real
life, coils windings have finite cross sections and while this can be ac-
curately taken into account by integrating over the area, assuming a uni--
form current density, it is often useful to have an approximation to sim-
plify calculations instead of an integration to complicate them. Let us

make some simple assumptions and see what approximations will be useful.

T

«-— loop

o

The magnetic field at point P on the axis of a loop is given by

uoi b2 2
—— — (MKS i — CGS
5 r3 ( ) Haxis 2ni r3 ( )

o

axis

In either case, this may be written as

b2

3
r

H=K

To illustrate how we can make an approximation for finite di-
mensions of a coil winding we will make the following calculation. This
calculation shows that under certain conditions, by using the average
dimensions of a finite winding good accuracy can still be obtained.
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In the figure below we have a coil of dimensions as shown.

bl is the outer radius, b

(bl + b2)/2, the radial width of the coil is (b

2 the inner radius, ba the average radius =

= b2) and the length of

1
61 @ 2 2,1/2 2 2.1/2
the coil is [(rl - bl) - (r2 - b2 ].
The value of the field at the point P from loop, is
2
by
H1=Kr—3
1
and for loop 2 is 2
b2
Bp=K=
2
while that due to both is
bi bg
H=H1+H2=K ‘r—3 + —3
1 )

loop

4 :
1
-0~

-
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Whereas the value of H due to two loops of average r and average

b is: 2

and the fractional error in H made by this approximation is

H - Ha Ha
fract. error =—q7 = 1 T

We then have to evaluate Ha/H, let

ba = (bl + b2)/2 r = (rl + r2)/2
Ab = bl - b2 Ar = rl - r2
and 2 bi bi bi
Ha/H = r3 'r—3+ ? is
a 1 2

the fractional change in H due to approximation of average b and r, the

K's cancelling, then for

2b_=b, +b
a

1 2
2ba= bl - b2
_ Ab - Ar
by =b, %3 et
- _bb - _Ar
by =b, =3 Tg = T3 72
This becomes
2 3 3
Eﬂ } 2ba rl r2
H 3 23 23
ra blr2 + b2rl

substituting for r; and Tos b1 and b2 their values in terms of ba and Ab

and r, and Ar we obtain,
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2 Ar.3 Ar.3
Eé _ 2ba . (ra * 2 ) (ra ~ 2 )
H 3 Ab, 2 Ar,3 Ab, 2 Ar.3
ra (ba + 2 ) (ra ) )T (ba T2 ) (ra + 2 )
Carrying out some algebra and assuming that
Y
b T
a a
we have:
Ab (2.3
. 2 (1- G
_a _ a
H Ab (2 Ab (3 Ab (2 Ab (3
@45 Q-5+ Q-5 A +oy
a a a a
which reduces to
H
a _ _ (Ab (2
g - (Eg;) ) exactly

- (Ab 2 _ 1 Aby2
_kZba) —4(]))

a

The fractional error = 1 -

For a fractional error of 1%Z = .01

%h must be < 0.2 s-% which is quite generous
a

and for a fractional error of 0.1% = .001

Eb-must be < .0632 < %g-which is not bad.
a
This says that for all practical purposes if the coil cross
section dimensions are less than 1/16 of b or r we may substitute for
the coil cross section the dimensions of its center with very little loss
in accuracy. Calculations may similarly be made for off-axis fields if

the distance from the point in question to the coil is small compared to

the extent of the coil cross section.
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As with all approximations, care must be observed and an oc-

casional check made of the error occurring in making the approximation.
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CHAPTER 4
PERMANENT MAGNETS

Permanent magnets as mentioned in the first chapter were known

as exciting curiosities long before magnetic fields were associated with

currents or moving charges. The early permanent magnets were relatively

weak. Today, with modern materials, flux densities to 10,000 gauss

(1 weber/mz) (being chiefly limited by the saturation of soft iron pole
pieces) and filling air gap volumes to many cubic centimeters are possible.
A preliminary example to obtain some idea of the size and weight of
magnets required to produce a given flux in a specific air gap is given

(1)

below.

The dimensions are:

B flux density in gap = 4000 gauss

g

L
g

I

length of working gap = 2 cm
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Lm = length of magnet, min = 14.5 cm

A = max cross section area = 16.3 cm2
max

D = external diameter magnet = 12 cm

Vm = vol magnet = 300 cm3

Weight of magnet (Alcomax III) equals approximately 2.2 Kg (4.8 lbs).

This magnet produces a flux density in the gap, 2 centimeters
long by about 2 centimeters diameter of 4000 gauss (0.4 Webers/mz).
This is a relatively large flux density in a volume of about 6.3 cm3
from a magnet weighing less than 5 pounds. Rule-of-thumb formulas for
proportioning magnets to other sizes show for a given flux density in

the gap that

length of magnet « to length of gap
2
area of magnet « to (length of gap)

3
hence, vol. of magnet « to (length of gap)

Thus, to double the gap length would increase the magnet length
by a factor of 2, the cross sectional area by 4 and the volume and weight

by 8.

As can be seen, for very large flux densities and working gap
volumes, the magnet volume increases very rapidly because of the cubic
relationship. This is expected however, because it is the gap volume

which must be filled with the flux.

Two questions now arise. One, is the magnetic field produced
by a permanent magnet any different from that produced by dc current
carrying coils? And two, where does the magnetic field come from in
a permanent magnet? The first question can be answered categorically
no. There is no way to differentiate one kind of magnetic field from
the other. The method of producing the field gives no properties to the
field which can be attributed to the way in which it was produced although
it may be more convenient to produce a field by one means rather than
another. Fields produced by permanent magnets require no power supply,

they are compact, they are stable. If a coil alone (with no iron) was
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used to produce a field of the flux density in the example above very
high currents would be required and a great amount of heat would be
generated in the coil. This would lead to complications in the appara-
tus to remove the heat so thaf it would not effect any biological ma-
terials in the region. However, the magnetic field produced would have
the same properties as the field from the permanent magnet. The design
of the magnet and its pole pieces determine the flux density and the
uniformity of the field, but the effect of any flux density on

any material whatever has been shown to be the same, however that field
was produced. Suppose we wind a coil of wire around a wooden cylinder.
Then, except very close to the wires, the external magnetic field will
look like that of a permanent magnet of the same size. Two such coils
will produce forces on each othef which are the same as the force pro-
duced by two bar magnets. The coil of wire will behave as if it had

two poles near the ends just as the bar magnet behaves. If the coils
and bars were carefully proportioned and camoulflaged they could not be
distinguishable from each other by their actions or the fields they
produced. How then does the magnetic field of the permanent magnet come
about? In a very simplified way let us look at the structure of matter.
All matter consists of atoms, each atom consisting of a nucleous sur-
rounded by a cloud of electrons of negative charge. These electrons can
be considered to be rotating in orbits at very high velocities both
clockwise and counterclockwise. Each electron, although of a very small
charge (the smallest known, a unit charge) will, with its high velocity,
produce a magnetic field similar to that shown in the figure on the next
page. In some materials, iron and other ferromagnetic materials, many
of these atoms will be constrained by crystal lattice forces to have

the resultant of the fields from their electrons pointing in the same
direction. These groups of atoms with a net magnetic field are desig-
nated magnetic domains and are large enough to be seen with a microscope.
A rather thorough and mathematical treatment is given in Hadfield(l).

The direction of the fields of these domains are randomly oriented.
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But the resultant magnetic fields of these domains can be aligned by

the application of an external magnet field. When the external field is
removed these domains remain aligned and their magnetic fields add up

to produce a large resultant magnetic field. The material has become

a permanent magnet. Essentially what we have done is to align electrons
moving in orbits producing what can be considered as a net current sheet
flowing on the surface of the material. Thus, if we consider a cylin-
drical bar magnet we visualize a cylindrical current sheet on the sur-
face of the magnet. Hence, we should not be astonished to find that a
coil of wire wound on a wooden rod will produce the same external field
as a permanent bar magnet. This explanation is admittedly oversimplified,
but even this simple description will account for the fact that when a.
permanent magnet is broken in half two permanent magnets are produced
and not separate poles. Magﬂetic poles are a fiction, but for some pur-
poses a useful fiction. Even the most modern theories of permanent mag-
netism are not entirely satisfactory and do not approach the rigor and

completeness obtained with the theory of magnetic fields from currents
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in conductors. However, it is not necessary to know or understand the
origin of the magnetic field of a permanent magnet to be able to use it

or even to design it.

Permanent magnet materials most suitable for constructing
laboratory magnets are those known as the alnicos. Alino magnets are
composed of an alloy of iron, nickel, aluminum and cobalt. ' The percen-
tages being in the range 10-12Z Al, 15-207% Ni, 5-147% Co, 0~6Z Cu and
the remainder iron. After melting and casting a heat treatment sequence
is followed with reheating and controlled cooling rates to develope op-

timum and uniform magnetic properties.

The magnetic properties obtained in magnets made according to

this procedure are in the range,

Br (remanence) = 6000-8000 (0.6-0.8 w/mz)

H_ (coercivity) = 450-650 oersted (36000-52000 ampere turns/
meter)

B (max. energy product)

1.5-1.7 MGO (Million—-Gauss-Oersted)
max

(12000, 13600 joules/m>)

These terms will be explained shortly. Modern alloys of this type are
far superior to carbon steel and about twice as good as the best cobalt
steel in the amount of magnetic field energy available per pound. They
are far less expensive and more available than any of the exotic materials

which may possess ten times the magnetic energy per unit volume.

To understand the terminology of permanent magnets let us
consider a toroidal winding with n-turns of wire. The ring has central
circumferential length 1 and cross sectional area A. As current is in-
creased through the wire we find that if we plot B vs. H a curve similar
to the following figure is described. We obtain a straight line oa,
reducing the current we return to o, reversing the current we proceed to

b and reducing -I to o we again return to o.
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The magnetizing force or field intensity is given for this

special case as,

——Z”iNI (CGS)

H=1;—I(MKS) H

and the flux density inside the toroidal coil of the area A is on the aver-

age for p =1
B = uOH (MKS) B = H (CGS)

The flux in the area A will then be

¢ = BA (MKS) ¢ = BA (CGS)
or
_ NIA _ 4TNIA
¢ =y 7 (MKS) 9 = -1 (CGs)

If we could now fill the region inside the windings with a ferromagnetic

material, such as '"soft iromn," a material which would retain no magnetic
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field after the current is removed, we would find a different curve of

B vs. H as shown in the figure below.

D
5 B
§ C
™~ d -
Y
3
U,
e
0
yy H

Md-jm:flj*my force

The third quadrant would be an inverted mirror image of the first quad-
rant. The permeability, y, is defined as the slope of the line oc, the

maxinmgm permeability, u___, as the slope of the line od and the Znitial

max
permeability, My as the slope of the line oe as the curve approaches
the origin. Note that the permeability u is not the slope of the B-H
curve, this slope is called the differential permeability and is defined
by

_1 4B

dB
Ha = qn (C6S)

only at very small fields wil p = ud which is then pi.

If we now replace the "soft iron'" with any real ferromagnetic
material and especially with one which would be called a permanent mag-
net material, we find an unexpected development —- hysteresis. That is,
as we traverse the B-H curve first increasing, then decreasing the cur-
rent as before, we do not retrace the same curve but rather find we may be

on any of an infinite number of curves as shown in the figure.
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H
where
oeab initial magnetization curve
efge'f'g' minor hysteresis loop
Br = oc residual or remanent magnetization of material
—Hc = od coercive force of material
bedb'ce'd! the hysteresis loop of the material

If the material has no initial magnetization and we apply a
current to the surrounding coil, increasing it steadily we traverse the
curve oeaf, the initial magnetization curve, similar to that shown in
the preceeding figure. If we now reduce the curreﬁt (and for a short
way retrace our path) we are on the major, or simply the hysteresis loop
of the material--the loop which contains the largest possible area of
all, the hysteresis loops. Returning to zero current and hence zero H
we find we are at point c. The flux density corresponding to this point
is called the residual magnetism, retentivity or remanence énd is de-
noted by B_. At this point the material has become a permanent magnet.

If we now reverse the direction of the current and increase its
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magnitude, we continue on the curve from c and eventually reach d. At
point d the flux density in the material has been reduced to zero but
has required a field intensity Hc to accomplish this. This value of

H = HC is the reversed magnetic intensity required to produce zero flux
density after the material has been magnitized to the point b or to
saturation. Hc is the coercive force or coefcivity of the magnetic ma-
terial. The third quadrant is identical to the first and the second is
identical to the fourth except for inversion and reversal. This general
curve shape is typical of all permanent magnet materials; only the

slopes, magnitudes and width of the loop will be different depending on

the material involved.

Note that the permeability u is not a constant, but first in-

creases to a maximum and then decreases as shown in the following figure.

A —

So far we have been discussing a closed ring of magnetic ma-
terial. No external field or flux density is available for use,therefore
let us now consider a toroidal ring which has been magnetized to satura-
tion, the coil removed and a small section of the material removed as in

the figure.

- 71 -



After magnetizing to saturation and removing the current we
arrive at some point on the magnetization curve. The point we arrive
at if the ring were closed is Br. When the ring has a gap we move to

the left and downward as shown in the following figure to point P.
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The equations governing the point at which we stop are as

follows:
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In a permanent magnet system, with no actual current in a coil, the
total magnetizing force or magnetomotive force in the complete circuit
is zero, just as the voltage drops through a complete circuit of a
simple battery-resistance circuit add to zero. The magnetomotive force -
in a magnetic circuit is just the magnetizing force per unit length
times the length or

F = JHdl

therefore

JH dl + JH dl
gap gap magnet magnet

this becomes

H1 +H1 =0
g8 m m

and magnetomotive forces are

F + F =0
gap magnet

Further, flux lines are continuous hence none are lost when leaving the

magnet and going into the air gap and so we have for flux:

¢gap B ¢magnet
but
B A =B A
gap gap mag mag
or
BA,=BA
g S m m
These two equations
H1 =-H1
g 8 m m
BA =BA
g 8 m m

are essentially the fundamental equations of the permanent magnet cir-

cuit.
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If one is multiplied by the other we have

BH1A =-BHI1A
gggs mmm m

but

gap or magnet volume, hence,

BHs V =-BHV
g 88 m m m

but
B =uH (MKS B =1 CGS
g = Vo, OKS) B, = H (CGS)
hence,
%
N Vg = —(BmHm)Vm (MKS)
or

2
Bgvs = —(BmHm)Vm (CGS)

This shows that to produce a flux density Bg in a gap volume Vg’ we

need a magnet volume Vm with a certain BH product. If this product can

be maximized we will have the minimum magnet volume. If we now plot

B vs. BH for our magnetization curve we can find this maximum BH = (BH)max.
This is done in the figure on the next page. The regular demagnetiza-
tion curve is on the left and with the same ordinate the BH product

curve is in the right.

If, for any given material (demagnetization curve given) we
operate at a B/H = p ratio such that (BH) = (BH)maX is a maximum, we

will than be obtaining the maximum B in the gap.

Often the BH product is referred to as the energy product of

the flux in the magnet or gap and (BH)max is the maximum energy product.

Strictly speaking

— (joules/meter3) (MKS)

—%-(ergs/cm3) (CGS)

- 74 -



B
'De\magheénga,fwm curve BH Proiur—t cuvrve
<9Pénnurn
Working Po'..,.,t
1=
\ — - —
! (]
I [
{ I
|
|
|
| |
| 1
' {
! ]
! (
H M“T"ct'smt_\ fovce ©O CBH)\"nax BH

is the magnetic field space—energy density, but generally the numerical

factors (1/2 an 1/87) are omitted.

The magnetic circuit can be considered analogous to the dir-

ect current eleetric circuit (see figures below).
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with one main reservation: energy is not dissipated in the permanent

magnet circutt.

Electric Circuit Magnetic Circuit
E = RI F = Rm¢
E = electromotive force = magnetomotive force
= resistance to current flow . reluctance to flux
I = current ¢ = flux

The second reservation is that the electrical circuit equation
is usually a very good approximation to the physical battery-wire-resistor
circuit because the resistance is linear with current magnitude and the
current is constrained to remain in the wire and resistor. The magnetic
circuit equation is at best only a good approximation. Often it is
only a fair approximation and occasionally a poor one. The reluctance
(depending on u) is hardly ever a constant and depends on the magnetic
history of the magnetic material. Further, the flux is only semicon-
strained to lie in the magnetic material and spreads out from it. Also,
in the gap it spreads greatly and not being uniform must be accounted
for. Nevertheless, the approximation is very useful and corrections can
be made for the various deviations from the simple picture. Rules for
the addition of magnetomotive forces are similar to those for electromo-
tive forces and rules for the addition of reluctances in series and in
parallel are similar to those for resistances in series and parallel.

With this in mind let us again consider the magnetized toroidal ring:
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H1 =-H1

g g m m
BA =BA
gg m m

and this Fm appears across the gap as —Fg which contains the flux ¢g.

The gap reluctance is

1 1

= -8 = _8

R = (MKS) R = (CGS)
g UOAS g Ag

The magnet reluctance is

1 1
m m
R = (MKS) R = —— (CGS)
mo A g WA
Hence,
Fg = Rg¢g and Fm = Rm¢m
or
L& g
F = ¢ (MKS) F = ¢ (CGS)
A A
g Mo e g g g g
and 1 1
m m

(CGS)

F = ¢ (MKS) F —
m uqum m . m uAm m

Now, in order to use these equations it is necessary to find
the working point P of the magnet with given gap and magnet dimensions.

To do this it is necessary to find Bm/Hm.

Since
BA =BA
m m gg
and
H1 =-H1
m m gg



we take their ratio and solve for Bm/Hm

B B (A /1)

m__ 8 g £
H H (A /1)
m g m ' m

Since in air

B = H MKS B =H CGS
g = Mol (MKS) . . (CGs)
we have
B
o Yo (Ag/lg? henries Eﬂ = A/t (gauss/oersted)
H A/l meter H (/1) g
m m m m m Tm
(MKS) (CGS)
Now from the figure we see that
B W, (A /1)
— = = _.-0 8 B
m tan® A 71 (MKS)
m m "m
Bm A/l
E_ = tanf = - —g———g-A /l (CGS)
m m m
B
B,
A -
1
L%
! s
: ~
t
! 3
] S
. AN
. e
: { |
H Hm 0 " ; BH
Mt.jhe%aJ mq ﬁrce eéhergy
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This gives us the working point P which may or may not be at
(BH)max’ the optimum working point for the particular magnetic material
we have chosen. Generally, it is best to work backwards, choosing the
working point (hence tanf) and the gap dimensions and then calculating
the magnet dimensions. Actually, this procedure is a bit crude (neglect-
ing many things) and it is necessary for useful design work to include
two correction factors in the equations. These factors account for
several things: leakage flux from the magnet, a fringing in the working
gap, and a magnetomotive force drop in soft iron pole pieces and the
fact that unless the magnet is ellipsoidal in shape, it is no? magnetized

uniformly throughout its volume.

The correction factors are applied in this way

BA =f3BA H1 =-fHI1
m m Bgeg m m Hgg
and fB (A /1)
tand = - — q (MKS)
, fH o (Am/lm)
£ (A /1)
= - —— (CcGSs)
fH(%/%g

Many empirical tables and formulas have been worked out from
meaéurements of actual designs. Alternatively, the actual magnetomotive
force drops in the soft iron and the fringing flux around the magnet and
in the working gap can be calculated. The various parallel reluctances
in the gap and around the magnet can be calculated separately and included
in the calculations. The factors fB and fH are dimensionless, fH is
rarely less than 1.1 or greater than 1.5, 1.35 has been suggested as a
good engineering approximation. Factor fB may be approximated for many
purposes as: 1
f,=1+7 (FH

g
where

=
]

length gap

A,
I

diameter gap
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The factor fH may be defined in terms of the magnetomotive
force drops in soft iron pole pieces and the gaps between these pieces

and the working gap. Thus,

Fi
fH=l+-]§‘—
g
where
; = mmf drop in the iron and joints
Fg = mmf drop in the working gap

The factor fB may be defined in terms of the fringing flux and
the flux in the working gap. Assuming the same magnetomotive force across
all gaps, these fluxes may be described in terms of the reluctances of

these gaps. Thus,

g
f.o =1+
B R1
where
Rg = reluctance of useful gap
R1 = total reluctance of leakage gap

A number of formulas have been derived to evaluate the reluc-
tance of many different geometrical shapes and a few are given in

Hadfield(l) with procedures for their application, while a great number

(2)

are given in Rotors . A good, short design manual has been published

(3)

by the Thomas and Skinner Co. .

Very good estimates can be made of the reluctance of unusual
geometries by means of electricél circuit analogs. These may take the
form of capacitance 0¥ resistance models in two or three dimensions using
electrolytic tanmks, conducting paper or physical capacitances of sheet
metal., These are usually resorted to only when an estimate cannot be

made by the Rotors formulas.

Further details of the design of permanent magnets will not
be gone into here as the references given are rather complete and with

worked out examples.
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It will be necessary in the design of permanent magnet assem-
blies to have available the B-H curves of several magnet materials. These
are readily available from the manufacturers of magnet alloys. A few
are listed in the references (4 through 11). Generally, except for special
applications, one of the readily available Alnicos (such as Al-5) is
best. Many manufacturers are willing to supply engineering and design

advice and it is wise to seek and use it.

One problem which has not been mentioned is that of magnetizing
the magnetic material. In general, it is necessary to magnetize the
material gfter it has been assembled into its final configuration in order
to achieve the optimum properties of the magnet material and configuration.
Except in small assemblies this is difficult to achieve without expen-
sive equipment. The manufacturers of magnet materials can often be per-
suaded to do this, however, for a nominal fee. Once a magnet structure
has been assembled and magnetized it should not thereafter be disassembled
for its properties will not remain same in consequence of the motion of
the working point on the B-H curve. If it is necessary to have a magnet
assembly which must be taken apart or which must have a variety of pole
pieces fitted for different experiments, then this mus?t be known and
allowed for in the design beforehand. This will result in a magnet which
may require several times the volume of magnetic material than that which
wouyld be required for the most economical single design (optimum). This
will, however, permit a wide variety of pole piece configurations if this
is what is desired. Except in very large magnets this is no¢ an expen-~
sive solution to the problem. 'The design of a magnet which will work as
required under a large variety of magnetic circuit conditions is consid-
erably more complicated than a simple circuit design and it would be

best to seek experienced aid for its design.

Chapter 4 - References

1. Permanent Magnets and Magnetism, D. Hadfield, Ed., John Wiley and
Sons, New York, 1962.

2. FElectromagnetic Devices, H. C. Rotors, Chapman and Hall, London, 1941.
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10..

11.

Permanent Magnet Design, Thomas and Skinner, Bulletin M303, 1120
E. 23rd Street, Indianapolis, Indiana, (also ask for data bulletins
on permanent magnets.)

U. S. Magnet and Alloy Corporation, 226 Glenwood Avenue, Bloomfield,
New Jersey.

Arnold Engineering Company, Div. of Allegheny Ludlum Corp., Marengo,
Illinois.

General Electric Co., Magnet Materials Business Section, Edmore, Mich.
Indiana General Corp., Magnet Division, Valparaizo, Indiana.

Permanent Magnet Co., 4437 Bragdon Stree, Indianapolis (Lawrence),
Indiana.

Thomas and Skinner, Inc., 1110 E. 23rd Street, Indianapolis, Indiana.
Westinghouse Electric Co., Metals Div., Blairsville, Pa.

Crucible Steel Co. (Sub. Colt Industries) Magnet Div., Elizabethtown,
Kentucky.
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CHAPTER 5
THE EARTH'S MAGNETIC FIELD

For many centuries it has been known that a magnetized rod,
when freely suspended at its center, would align itself in roughly a

north-south direction, the earth acting like a huge magnet itself.

The magnetic directions on the earth were known not to be
completely regular nor exactly geographically north-south. Around the
year 1600 William Gilbert, in attempting to explain the magnetic lines
of the earth, constructed a small sphere from the only magnetic material
available to him, magnetite or lodestone and plotted the directions of
the field outside the model. The magnetic field of the model closely
resembled the magnetic field known on the earth. Later Gauss in 1840
showed by calculation that the earth's field could be described approxi-
mately by assuming that the earth was a uniformly magnetized sphere.

He further showed that the same field could be obtained external to the
earth by assuming a bar magnet, small compared to the earth, placed

near the center of the earth. To account for the fact that the lines of
flux are not in a geographic north-south direction, this magnet must
have its axis at about 11.5° from the earth's axis of rotation and be
displaced to one side of that axis. This is shown in the figure. The
extended axis of this imaginary dipole intersects the earth at about
78.5°N Lat, 69°W Long and 78.5°S Lat, 111°E Long, these points are
called the geomagnetic poles. On the other hand, the directly determined
"apparent' North and South magnetic poles are those main north and south
points on the earth's surface where a dip needle aligning itself with
the lines of magnetic flux point downward 90° from the horizontal.

These apparent, or dip poles, are located at 70.8°N Lat, 96.0°W Long

and 71.2°S Lat, 150.8°E Long (about 1936). As can be seen, these do

not correspond to the dipole axis poles and further are not symmet-

rically placed with respect to the geographic poles. Actually, there
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are many such points scattered over the earth due to local anomolies,
These poles move irregularly with time a few degrees per hundred years
(mainly a rotation back and forth around the geographic pole). In
addition, the magnetization of the earth has been gradually decreasing
by about 1 part in 1000 to 1:1500 per year for about 100 years, It
would be extremely risky to extrapolate this figure backward, however,
as it would yield a very high intensity thousands of years ago which is
not confirmed by paleomagnetic observations. Much of the published
data on the magnitude and direction of the earth's field is quite old
and sometimes inconsistant. The average value of the intensity of mag-
netization of the earth per unit volume (assuming uniform magnetization)
is 0.08 cgs units/cm3 which is about 100 to 1000 times the average
value for ordinary rocks on the earth's surface. A thorough review of
measurements of the earth's field over the centuries is given by

(1)

Chapman along with the various historical and modern techniques used.

In addition to the non—symmétry because of this general off-
centerness there are local variations due possibly to large deposits
of iron ore within the earth. Superimposed on the steady field there
are daily and yearly cycles and an 11 year cycle. The yearly cyclic
variation is quite small amounting to about 2.5 minutes of angle (op-
posite in northern and southern hemispheres).. The daily variation is
on the same order varying with location on the earth's surface. The 11
year cycle is probably associated with the 11 year sunspot cycle. Elec-
tric ion currents in the atmosphere probably account for irregular
variations in the earth's magﬁetic field sometimes causing much larger
variations than those mentioned above. These are known as magnetic
storms and may also be associated with sunspot activity. All these

variations can be in both direction and magnitude of the earth's field:

There are three aspects of the earths magnetic field regular-

ly measured and recorded. These are:

1. Declination - the angle between the resultant magnetic
direction and the geographic direction.
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2, The angle of dip - the angle measured between the
direction of the earths magnetic field and the hori-
zontal plane at that point.

3. The horizontal component of the earth's magnetic field
intensity.

The declination varies from point-to-point on the earth's
surface in a fairly regular manner. It is given in degrees deviation
east or west from the true north-south direction. The line of zero
declination is known as the agonic line and crosses the U, S. roughly
from Chicago to Savannah. This agonic line is gradually moving west-
ward as are all the lines of declination. To the east of this line the
declination is west and is increasing and to the west of this line it
is east and is decreasing. This amounts to about .05° per year in the

U.S.

The dip angle varies from approximately zero at the equator

' It is measured

to 90° at the "apparent north and south magnetic poles.'
in the vertical plane which intersects a compass needle at that point

on the earths surface. There are many local anomolies.

The horizontal intensity of the earths field is related to

the total earth's field by the dip angle.

H

8 I H=H, cos &
l
He : H = /Ior/_}on'/a./ m/mnz’
) earth’s freld
|
_____ N Hy = totul sudensy
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H = HT cos®

where

Horizontal intensity earth's field

2]
[}

Total intensity earth's field

dip angle

Knowing the horizontal component and the dip angle the total intensity

of the earth's field can be determined.

A short table of dip angle, declination and horizontal inten-

sity in the U.S. is given below (about 1920):

Dip Angle (deg) Declination (deg) H (oersted)

Maine 74 - 76 16 - 21 W Jd4 - L16
New York 74 4 - 12 W A6 - .17
Florida 57 - 58 1-2.5E .27 - .29
Michigan 73 - 76 2 E~-3W .15 - .18
Kansas 67 - 69 10 - 12 E 21 - .23
Mississippi 61 - 66 5~7E 24 - 26
Washington State 71 23 - 24 E .19

California 58 - 62 14 - 19 E 25 - 27

The pattern of the lines of flux as they are distribured over
the earth is shown approximately in the figure below for both a uniformly

magnetized sphere and for a bar near the center of the earth.

Nr(

Uniform medel
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Note that the flux lines inside the earth's surface are quite
different (the field is uniform) for the uniformly magnetized sphere
model as compared to those for the bar magnet model. There is no way
to determine exactly what the pattern is inside the earth so we cannot,
of present, tell which model is closer to reality since the external
pattern of flux lines is identical for both cases. Since it is of no
practical consequence to know which model is more correct és Both give
the same external field, it is unnecessary here to pursue the subject
further, However, an excellent article on the history and measurements
of the earth's magnetic field has.recently. appeared in the Journal of
Applied Physics(z). It discusses the change in magnetism of the earth
through the geologic ages and the paleomagnetic techniques for deter-
mining these changes. Included are many references to other studies and

theories.,

The experimenter who wishes to reduce the earth's magnetic
field (in an experimental region) to a'very low value is concerned with
the earth's external magnetic field. If he uses a coil assembly to pro-
duce an equal and opposite field in that of the earth, so that’the
earth's field is cancelled by the generated field, he must know approxi-
mately the magnitude and direction of the total field in the region of
his experiment, The figures given in the table are only approximate
and in addition they were taken in regions far removed from civilization.
The local field in a laboratory is often considerably different from that
given for the local field in tables. 1In fact, at different locations
in the laboratory it may be different by a factor of two in magnitude
and the dip may vary by + 20 degrees or more. This is generally due
to the iron structure in the building, but also may be caused by iron
bench frames or other iron work in the laboratory. Occasionally, the
iron work in the laboratory may be permanently magnetized producing very
strange patterns of flux. Often this permanent magnetism can be re-—
moved from the iron work in benches by passing a large coil, of many
turns, energized by ordinary 60 cycle mains current, over and around

the bench structure and other permanent iron structures in the room.
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Naturally, it is best if these iron frame works can be removed from the
magnetobiology laboratory and use only wood or aluminum or other non-
magnetic materials. Even aluminum and brass are often slightly magnet-
ic due probably to impurities of iron in the alloys; generally this is
of little consequence except in the most precise experiments. In the
construction of wooden frames for coils or the support of specimens it
is best to avoid the use of iron screws or nalls which will cause small
but definite distortions in the flux distribution. It is also neces-
sary to know the direction and magnitude of the earth's field when
shielding boxes or cylinders are used to reduce the flux in the experi-
mental region. A long shielding cylinder must be very carefully
oriented with its axis perpendicular to the direction of the earth's
field at that point in space. This problem is discussed elsewhere in
the section on the design of magnetic shields, but it is pointed out
here that a change in angle by just a few degrees may mean the difference

of a factor of 10 or more in the attenuation achieved with such a shield.

The fluctuations of the earth's field must also be considered
in relation to the method used to reduce or cancel the earth's field,
A coil assembly will subtract the steady portion of the earth's field
leaving virtually undisturbed the fluctuating component, whereas a shield
will attenuate both the steady portion and the fluctuating magnitude of
the earth's field to about the same extent. A fluctuation of the direction
of the magnetic field, if appreciable, may produce a greater change in
the attenuated field inside a shield than a change in magnitude only,
For these reasons, it is essenfial, to be able to measure the flux den-
sity in direction, magnitude and time, inside a coil or shield assembly
used to reduce the earth's magnetic field, This will then give an in-
dication of the kind and percentage variation in the field in the region
of the experiment and enable the experimenter to determine whether this
is tolerable, Low frequency fields 6f 60 cycle frequency from the mains
may also be present and are likely to fluctuate with the power demand.
These can often be checked by means of a many-turn coil of wire placed

in the experiment region and observed on an oscilloscope -- great care
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must be taken to ensure that the signal observed is due to the magnetic
field and not pick up in the wiring. This can be partially checked by
enclosing the coil in a grounded electrostatic shield without changing
anything else in the circuit, Another test for pick up is to substitute
a resistance of the same value as that of the ceil and observe if any

signal is present.

Magnetic fields in regions other than the earth, such as in
far space or on the moon are quite low compared to those on the earth,
although the magnetic field inside a space craft may be almost any
value depending on the equipment carried. Any biological experiments
carried out in a space craft will be subject to this ambient field and
it should be known, The biological experimenter should request this in-
formation from those making the final qualification tests on the space
craft even if this experiment apparently is not susceptible to magnetic
fields.

While the earth's magnetic field is normally 0.4 to 0.8
gauss, the magnetic field of the moon has a field of about 40-100 x 10 -
gauss (40-100 x 10 -9 weber/m ) or about 1/500 that of - the earth 'In-
térplanetary space contains fields on the order of about 1/2 of that of
the moon. G. E. Hale in 1913 concluded that the Sun had a magnetic
field similar to that of the earth but about 100 times greater. Local
fields on the order of 4000 gauss have been estimated in the region of
sunspots. Various hypotheses as to the origin of the magnetic field on

3

both the Earth and the Sun are discussed in Fleming

The subject of the earth's magnetic field and its possible
biological effects is a complicated and fascinating one. Decreases and
reversals of the magnetic field in the distant past(z) (to 5 million
years ago) as revealed by paleomagnetic studies may have influenced
the rise and fall of several ancient species. This may have been a direct
consequence of the flux density on the organism or indiféctiy through the
changes in shielding of the earth against energetic particles from space.
Correlations between various fossil abundances and the strength and direc-
tion of the earth's magnetic field raise new questions and suggest

further experimentation in magnetobiology.
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CHAPTER 6

DESIGN OF CYLINDRICAL SHIELDS TO PRODUCE
"NULL" OR GREATLY REDUCED MAGNETIC FIELDS

In studying biomagnetic phenomena we have two choices with
reépect to the magnetic field of the earth. We can use fields higher
than the earth's field or we may use fields lower than the earth's field.
Various coil assemblies discussed previously are one means of reducing or
cancelling the field of the earth. Another and in some ways, more con-
venient method is to shield the biological material from the field of
the earth., This is possible because materials of high magnetic permea-
bility can be used to form a diverting pathway for the lines of magnetic
flux around the specimen. The resistance (more correctly reluctance) of
a path through iron or iron alloys of high permeability is many times
less than the reluctance through air so that a shield of this material
acts like a shunt or "short circuit!" of the magnetic flux. The flux
is thus conducted around the internal region of the shield. This shunt-
ing is not perfect and some of the flux will enter the region inside the

shield. (see figure below).

e
!
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For this reason it is necessary to have a shield of sufficiently low

reluctance, i.e., (1) thick enough or (2) of high enough permeability or

oY)

(3) multiple shields. It has been shown by Rucker that is is profit-

able to increase the shield thickness up to the point where

t < 3a/2u -
t = thickness of shell
a = inner radius
U = permeability of material

When this point is reached it is magnetically worthless to increase the
thickness further., To achieve greater shielding it is necessary to use
multiple concentric shields. Each shield then attenuating the residual
field remaining from the previous one, The shielding effectiveness is
usually defined as the ratio g or F of the field or flux density exist-
ing before the shield is put into place (Ho or Bo) to that remaining

inside the shield after it is put into place (Hi or Bi):

H0 BO
g:F:H—'=-—B—.-
1 1

As can be seen from the maximum thickness formula given above, if we use

modern materials of very high permeability the thickness is very small

u = 20,000 (Mu-metal initial permeability)
a = 0.5 meter radius
then
t = 3(0.5) 7 = 0.375 x 10" = .0375 millimeters
2 x 20 x 10

Usually a much thicker material is used for mechanical reasons.
Some shield designs utilize foil which can be wound in a spiral cylinder
interleaved with a non-magnetic separator to provide separation of the
layers. TFor a self supporting shield, however, a material of .020"
(1/2 mm) to .060 (1 1/2 mm) thickness is suitable. Suppose then we wish

to design a shield. It is necessary to pick a shielding material. For
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shielding against the earth's magnetic field Mu-metal (or molypermalloy
which has very similar properties) is quite suitable. Next, it is
necessary to determine the dimensions desired. We shall choose a
cylindrical geometry and specify a length three or four times the in-
ternal diameter. (This length is not considered in the shielding factor
calculation since this factor is calculated assuming an infinite length
shield.) This length, however, will be discussed in more detail later.
The material thickness is chosen generally for mechanical stability.

(2)

Stern has theoretically developed a recursion procedure for calculating
the shielding factor for any number of shields. The formulas and de-
finitions for this procedure are given below with two examples along with
a discussion of the choice of the value of permeability to be used for
each cylinder. Since permeability of magnetic materials is not constant,
but depends upon the flux density in it, the permeability to be used in

each cylinder has to be determined.

Formulas for recursion solution of shielding factor for

(2)

multiple cylindrical shields after Stern

Shielding factor BO/Bi = F (theoretical for iﬁfinite shield

length)
Frp = 172 CQuppq + v y)
uy = vy o= 1
Ui T %guy Y By
Viel T %% T8V
o = L=ey =gy gy ¥ D) egei
By = ey q41 (meg) + g/ ey 449)
o S Hey t ey g - (D ey 1)
g = b =gy =8y qu1 ¥ 88 LOAD/u]

e, = Lb=a /b1 - 1/2 [®y-a)/b,1°
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. 2
ey ,q941 = [(agyqb)/ag g1 - 1/2 [(ay 4-by) /e, ]
and

En,n+l =0

where th
ai’bi are the inner and outer radii of the i~ shield respect-

ively.

Shields are nembered
from tinside outurard

It is only necessary to pick the proper value of the permea-
bility p for each shield. Since the permeability My is a function of
the.flux density Bi in the ith shield and since thils increases in each
shield as we move from the center outwards Hy will be somewhat different

for each shield, see graph (u vs B), * If the shield is to be used in
high fields or is very large and of very thin material, it i1s necessary
to guard against saturation of the shielding material. If the shield
is to be used in the earth's field, however, it is necessary to take
saturation into account only when the shield is very thin or very large
in diameter. Usually, the wall thicknesé\is made many times thicker
than necessary because of the structural strength required. In case of
doubt this may be estimated as follows. First, any sphere or cylinder
(hollow or solid) of high permeability will, when placed in a uniform
field of flux density B, concentrate that field at its surface as

shown in the figure.
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B (‘fo\-\’ frowm ob‘\'ect)

B = 28s (hear cyl.)

near

B= 3B, Csphcre )

The flux density before the cylinder or sphere is put into it is B,

after putting the cylinder or sphere into the field the flux density just
outside the cylinder or sphere along the diameter in the field direction
will be 2B0 for the cylinder and 3Bo for a sphere. If the cylinder or
sphere is hollow and of high permeability, the flux will be concentrated
in the shell as shown in the figure below, increasing the flux density

A
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in the shell at the diameter A A' by approximately the ratio a/t. In

(4)

an unpublished paper by W. G. Wadey the flux density in the shell

(cylindrical) is given by
= a
B(8) = 2Bo [1 + . sin6]

as a function of the angle 6. When 6 is 90° the flux density in the

shell is a maximum and is

= a
Bmax - 2Bo [1+ t]

Wadey further suggests that since the flux density varles from point

to point and from comparison with measured values that an effective

B should be used which is 0.6 B . Then assuming a/t >> 1 we have:
eff max
Beff = 0.6 (a/t) 2B0
or
Beff =1.2 (a/t) Bo
This Beff can then be entered into a B vs. u curve for the material

used, shield and an approximate value of p obtained.

For shields used in the earth's field this calculation is
usually only necessary for the outermost shield. As an example let
Bo = 0.7 gauss, shield radius = 0.5 meters, material thickness = 1 mm =
10 © meters, material mu-metal, then:

B .. =1.2 &2 (0.7) = 1680 gauss
eff 10—3

from the curve we obtain p = 140,000 which is very close to the maximum

permeability and not far below saturation.

The exact shielding factor for a single shield cylinder of in-

(2)

finite length given by Stern is

“Fe1+720- @ w+i-2)

wl t
R jO
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if 4 >> 2 and (a/b)2 >> 1 this reduces to

this is also given by Wills(s)

in a much earlier paper.
Using this formula and the same figures as above where:

a=1.000m
b 1.001 m

e Lbx10 | (1.000)2
p 1.001

35,000 [.002] = 70

it

Then
B, = 0.7/70 = 0.01 gauss

and if this value were applied to a second shell inside the first of

approximately similar concentration

B = 24 (in the second shell)
eff2
and

M, = 32,000

Note that in this case of large diameter and small thickness we come
very close to the maximum permeability. One half the thickness df
material or twice the diameter would ‘have pushed us just over the hump
into séturation. If we had a flukx density of around 7000 gauss we would
have had both a drastically re&ucéd permeability and shielding factor.
In this case it was prudent to make this calculation and also to make
the calculation for the second shield since we now have a permeability
of 32,000 well above the initial permeability of 20,000. For any addi-~
tional shields we would use p = 20,000, the initial permeability of mu-

metal.

We would now be in a position to use Stern's iterative for-

mulas given previously, utilizing the just calculated values of y;
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20,000 for all inner cylinders, 32,000 for next to the outer and

140,000 for the outermost cylinder., While the estimates of these values
of permeability were made from the outside in, <t must be rvemembered that
the shielding factor calculations are made from the inside out. Wadey,
in the previously mentioned unpublished paper, describes a method whereby
a value of flux density is assumed inside the innermost cylinder and by

a series of iterations the proper permeability is found for each concen-
tric shell, one at a time, while using the Stern equations. This is an
excellent procedure, but is usually not necessary if the external flux
density is no greater than the earth's field and it does involve a con-
siderable additional amount of calculation. It can be used to estimate
the total number of shields required, but the standard Sterne procedure
can be run through for a few sample shields of different n and estimates
of the total shielding factor F can be made after any number of shields

by setting ¢ = 0 at that point to see if the desired field reduction

n,nt+l
has been obtained.
We will now calculate the shielding factors for two similar,
but different triple shields utilizing values of permeability obtained
by the method above, but for new dimensions. There will be, three
nested shiélds, each of one millimeter material thickness of mu-metal.
The shield nest 1 will have an inner diameter of 10 cm and a spacing
between cylinders of 1 millimeter. The second shield nest will also
have an internal diameter of 10 cm but will have a spacing between cy-
linders of 1 cm., This greater spacilng will yield a greater shielding

factor, but will increase the external diameter considerably.

The calculation will be carried out in some detail so that

anyone wishing to make a similar calculation may readily do so.
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Shield nest 1 shield nest 2

For Shield Nest 1
Permeabilities estimated by concentration formula for mu-metal,

20 x 103 (innermost cylinder)

ul=
Hy = 20 x lO3 (middle cylinder)
Hy = 42 x 103 (outer cylinder)

Dimensions

Spacing of shields O,l'cm
Thickness of shield material 0.1 cm

inside dia. of cylinders outside dia. of cylinders
a, = 10.0 ' b, = 10.1 (inner cylinder)
a, = 10.2 b2 = 10.3 (middle cylinder)
ay = 10.4 b3 = 10.5 (outer cylinder
From these values of a and b the €4 and ei,i+1 values are calculated.
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e, = (bj=a))/b, = 1/2 [(bl-al/bl]2
= (10,1~-10)/10.1 - 1/2 [(lO.l—lO)/lO.l]2

= 0.1/10.1 - 1/2 [0.1/10.1]2

= ,009852
0.1 \2
€, = (10.3-10.2)/10.3 - 1/2 (iIi?ﬂ
= .009662
v 2
0.1
€q = 0.1/10.5 ~ 1/2 (EBT3>
= .009478
Similarly the ei,i+l are calculated. However, En,n+1’ the outermost
value, cannot be calculated and most have some value assigned. Since F
is not affected by this choice it may be made zero, hence €g4 = 0.
e., = (a=b)/a, ~ 1/2 [(a,-b,)a,]?
12 2 717772 2 71772
= (10.2-10.1)/10.2 - 1/2 [0.1/10.2]°
= .009756
€y3 = (10.4-10.3/10.4 = 1/2 [0.1/10.4]?
= .009569
a4 = 0
€, = .009852 €99 = .009756
€y = .009662 €9g = .009569
€q = .009478 €94 = 0

The values of a, 8, Y, § are next computed.
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0, =1 -, - ¢

1 1 2 + (ul+l) €.€

1 1712
=1 - ,009852 - .009756 + 20 x 103 (.009852) (.009756)
=1 - .009852 - .009756 + 1.922322

= 2.902712

0, =1 =€, - ¢

2 g = €93+ (uyHl) eqe

2623
— 1 - .009662 — .009569 + 20 x 105 (.009662) (.009569)
-1 - .009662 — .009569 + 1.849114

= 2,.829883
ag = 1- €4 = €34 + (p+l) €3€q,

=1- ,009478 - 0+ 0
= 0,990522
In a like manner the B's are computed

u

1
By = €y (1-e)) + o (1-¢,,)
= (.009756) (1-.009852) + =202832_ (1 009756)
20 x 10
= ,009660 + O
Y2
By = €23 (1_82) + E; (1—523)

3 (1-.009569)
20 x 10

= ,009477 + O
u

3
83 = €4, (1-53) + E_ (1-¢

)
3 34

For y's we have
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vy = upep ey = (D) egeq,
= 30 x 10° (.009852) + .009756 — 20 x 10° (.009852) (.009756)
=~ 197.04 + .009756 - 1.922322

= 195,127

Ty = Hpey ¥ €55 = (MyHl) eje g
= 20 x 10° (.009662) + .009569 - 20 x 10° (.009662) (.009569)

= 191.400

Y3 = H3Ey ¥ ey, + (ugtl) ege,
= 42 x 10° (.009478) + 0 + O

= 398.076

and finally the §'s

n,+1
l-¢, - ¢ + e.¢ 1
1 1 12 1712 | Hy

1 - .009852 - ,009756 + (.009852) (.009756) [1]

2}
[

= .980488

62 =1 - €y = €53 + €9€93 [1]

=1 - .,009662 - ,009569 + (.009662) (.009569)

= (0.980861

§3=1-eg-eq, +eqeq, [

=1~ .009478 -0+ 0

1]

= 0.990522

Summarizing we have
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oy = 2.9027 Bl = .00966 Yy = 195,127 61 = 0.9805
a, = 2.8299 82 = .00948 Yy = 191.400 62 = 0.9809
ay = 0.9905 83 =0 Y3 = 398.076 63 = 0.9905
From these we calculate the values of u and v starting with u = 1 and
vy = 1 and each from the preceeding. Then
u, = 0quy + Blvl vy =YY + lel”
= 2.,90271 + .00966 = 195,127 + 0.9805
= 2,91237 = 196.1075
uz = ayuy * ByYy V3 = Yaup t 8V,
ug = (2.8299)(2.91237) vy = (191.400) (2.91237)
+ (.00948) (196.1075) + (0.9809) (196.1075)
= 10,1008 = 749,789
uy = ogug *+ Bgvy V4 T Y3u3 t 83y
= (,9905) (10.1008) + 0O = (398.076) (10.1008)
+ (.9905)(749.789)
= 10.005 = 4763.552
u, = 1.0000 vy = 1.000
u, = 2,9124 v, = 196,1075
ug = 10.1008 vy = 749,789
u, = 10.005 v, = 4763.552

and finally the value of the shielding factor is determined as

F=1/2 (u4+v4)
= 1/2 (10.01+4763.55)
F = 2386.8

Notice that it is difficult to assign ahead of time the number of deci-
mal places to be carried. Rather, it is best to carry along at least 3

and possibly 4 significant figures and round off the final value of F.
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We now make a similar calculation for the shield nest 2, in
which the inner shield is identical to that in nest 1, but the next two
shields have been increased in diameter so that the spacing between the
shields is 1.0 centimeter instead of 1 millimeter. The shielding factor
will be increased at the expense of more volume required for the shield
and in addition will use somewhat more shielding material due to the

larger diameters of the two outer shields.

The calculations will not be shown in detail but a table of
the €'s and other parameters 1s given below for comparison with those

obtained for the previous calculation.

The dimensions of the cylinder for this nest are:

a; = 10.0 bl = 10.1 dinner cyl.
a, = 11,1 b2 = 11.2 middle cyl.
ag = 12,2 b3 = 12.3 outer cyl.

and ul = uz = 20 x lO3 but now u3 = 47 x 103 due to the increased dia-
meter and hence increased saturation of the mu-metal. This in itself

will lead to an increased shielding factor.

Then:

€ = .009852 512 = 0.,086032

€y = .008889 623 = 0,078608

€3 = .008097 834 = 0
a = 17.855871 Bl = ,0851844 Yl = 180.174 61 = ,904963
o, = 14.887433 82 = ,077909" Yy = 163.884 62 = ,913202
ay = 0.991903 83 = (0 Y3 = 380.559 63 = ,991903

ul =1 v1 =1

u, = 17.941 v2 = 181.079

u3 = 282.519 v3 = 3105,605

u, = 280.231 v4 = 110,595.6
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The shielding factor is calculated as

1/2 (ugtv,) = 1/2 (280.2+110,595.6)
55,438

The shielding factor for several other spacings has also been computed
(with the proper value of ) and has been plotted (see graph) to show
how an improvement in the shielding factor can be obtained by simply

increasing only this spacing.

Spacing mm F
0 474
1 2,386
5 16,328
8 38,383
10 - 55,438
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As can be seen the shielding factor of the second nest 1is
over 20 times that of the first, The increased spacing increased the
ei,i+1 values which in turn increased the o and B values which in turn
increased the u and v values. This 1s an appreciable gain in shielding
factor obtained at little expense and as far as this writer knows has not

been mentioned in other articles relating to the subject of shielding.

It might be mentioned here that because of the large value of
the shielding factor it is sometimes given in terms of db, in which
case;}

F (db) = 20 loglOF
and so for F = 2,386

F (db) = 20 loglO (2,386) = 20 (3.3777)
F (db) = 68 db (nest 1)

and for F = 55,438
F (db) = 20 log (55,438) = 20 (4.7438)
F (db) = 95 db (nest 2)

Each 6 db increase corresponds very closely to a factor of 2 improve-

ment in the shielding factor (each 3 db, a factor of 1.4 and each 20 db,

a factor of 10). It might be interesting to see what the shielding factor
would be for a nest of cylinders which has the same outer radius (12.3
centimeters) as the outside cylinder of nest 2 but has the same spacing

(1 niillimeter) as nest 1, This would give an inner radius and hence
working volume considerably larger but would have a shielding factor

moré like that of nest 1.

Let Sﬁield Nest 3
a; = 11.8 b1 = 11,9 (inner cyl)
a, = 12.0 b, = 12,1 (middle cyl)
ay = 12.2 3= 12,3 (outer cyl)
My = My = 203x lO3 inner and middle cyl.
Hy = 47 x 10 outer cyl.
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Now, as pointed out by Wadey(s)

1f all dimensions are changed
by the same factor the concentration ratio of each shell stays the same,
hence permeability stays the same and since the shielding factor F depends
only to the ratio of the dimensions, the factor F remains unchanged.

Hence scaling all dimensions (thicknesses and spacings) by the same factor

will give the same value of F,

If we apply this idea to cylinder nest 1 multiplying each
radius by 1.1714 to scale it up to the size of shield nest 3, we find

a, = 11.71 bl = 11.83 (inner cyl.)
a, = 11.95 b2 = 12,07 (middle cyl.)
a, = 12,18 b3 = 12,30 (outer cyl.)

A nest of cylinders with these dimensions would have exactly the same
shielding factor (F = 2386) as nest 1 and since these dimensions are
very similar to those just suggested we can conclude that the shielding
factor would be nearly the same. Hence we have avoided.the lengthly
direct calculation by utilizing this property of shields to obtain
a good approximation to this new configuration,

Some other remarks are pertinent here., In designing a shield
against the earth's magnetic flux density (B = 0.7 gauss; 0.7 x 10_4
webers/sq. m.) a considerable improvement in shielding factor can be ob-
tained if the shield thickness and diameter are made such that the flux
concentration places the material at or near the maximum of the material
permeability curve (see curve). If fhe flux density in the material is
kept above 800 gauss and below.4000 gauss the permeability will be
greater than 100,000 for mu-metal. For small.diameter shields this may

require a very thin material.

If we assume Bo = 0,7 gauss, B = 2000 gauss (max W)

eff
= a
Beff = 1.2 (t) BO
Then B
a, _ eff 2000
('E) = 083 B .83 _(5'.'7_
a —
(?) = 2380

If a = 10 em, t = 4,2 x 10-3 cm or ,0017 inches
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In this case the cylinder would not be self supporting and
would be difficult to handle. On the other hand, 0.05 cm (about ,020
inches) material can be made into cylinders up to 10 ecm radius rather
easily and a nest can be separated with styrofoam or balsa wood wedges

to form a sturdy configuration., A 10 cm radius with t = 0,05 cm gives

_ 10
= 168
with a p = 51,000 for the outermost cylinder.

The flux concentration must then, as mentioned previously, be
calculated for each succeeding cylinder going inwards until the initial
permeability of u = 20,000 is reached.

As was mentioned previously, shields can be wound in spiral
form with an interleaving separator of cardboard or copper sheet. This
would allow us to have a good mechanical configuration with a very thin
shielding material. Several difficulties here are that the permeability
of thin sheets is not the same as that of thicker material, data is not
as readily available and the shield cannot be heat treated after con-
struction. Heat treating (annealing) in a hydrogen atmosphere 1is nec-
essary, after mechanical working, to obtain the optimum permeability of
mu-metal. The advantages and disadvantages of spiral construction
should be thoroughly considered before a decision to use this type con-

struction is made.

End Effects

The caleulations above are based on the-assumption that the
shields are infinite length cylinders with the field transverse or
perpendicular to the cylinder axis. In practice the shield cannot be
infinite in length. An alternative is to provide a tight fitting over-
lapping cap for each of the cylinders in the nest on both ends of a finite
length cylinder. In the practical case where the shield length is a few
diameters this apprbximates the infinite length cylinder sufficiéntly

well for all cases except the most precise. In many cases, however,
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this 1s not possible. At least one end of the cylinder must be open.
Furthermore, such caps are quite expensive to have fabricated. It has
been shown that if a semi-infinite cylinder is considered, that the

field at the open end is just one-half the original external field.
Measurements on even short cylinders have shown that this is in fact true
and may be even less and nearer to 1/3 the original field. Teasdale(6)
in a very practical paper discusses the field penetration into very
short cylinders and cones and presents data for a number of sizes. For
an axial field this is not true and the field at the mouth of the cylin-
der is approximately equal to the original external field. It is reit-
erated here that to obtain maximum attenuation of the field it is
necessary to orient the shield so that the axis is perpendicular to the
original external field direction. This is usually not difficult to do.
The shield may be placed with its axis horizontal and this axis rotated

in the horizontal plane until the above condition obtains,

If one or both ends of the shielding cylinder is open, the
flux will penetrate into the ends and reduce the shielding there as shown

in the figure. 1If one goes into the cylinder far enough the maximum

l 1

l e %
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attenuation is reached. As a practical measure the point where the
shielding factor is 687 of maximum F is a function of the diameter D and

also of F. Wadey(s) (6)

using Esmarchs data has proposed a function il-
lustrated in the logarithmic graph. Points from Teasdales paper and data
which we have obtained fall close to this line. It is suggested that
this relationship be taken as a gobd general gulde as to how far one must
go into an open-ended cylindrical shield to obtain approximately 2/3 of
the maximum shielding possible. The data can be interpreted as giving

This is an empirical formula, but it covers data from three sources
relatively well over a wide range of cylinder length to diameter ratios
and from one to many shells in a nest. As can be seen from the curve,
the higher the shielding factor the farther one must go into the cylinder
to achieve 68%Z of that factor. It also shows that if one goes into the
cylinder at least one diameter (for a nest, the inside diameter) the

68% point is reached even for F = 107. For a nest of shells of length
three times its inner diameter, the middle third should then have a
shielding factor greater than that 687 of F, even for high values of F.
For this reason it was mentioned earlier that the L/D ratio of open ended
shiélds should be around 3 or 4., If one end of the shield nest is
tightly closed with well-fitting caps on each of the shields in the

nest, this capped end should look like an infinite length end except
possibly very close to the end~surface. Approximately two-thirds of this
nest (L/D = 3) should then be usable.

As a practical rule of thumb we give the following for usable

length (Lu) (where effective shielding > .68 F)

Both ends open Lu = (L - 2D)
One end open Lu = (L - D)
Both ends capped Lu =L

where D = dia. inner cylinder

length of cylinder.
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Subject to the restrictions noted above this should always give a safe
shielding length. Care must be taken that the shield axis is perpen-

dicular to the original field direction to achieve maximum shielding.

It may also be desired to shield against alternating fields
such as would be produced by transformers, lamps, motors or main
wiring at say the usual line frequency of 60 cycles per second. If the
estimated or measured peak flux density is approximately the same as
the static flux density for which the shield was designed no additional
precautions are necessary since the shielding factor for varying filelds
increases as the frequency increases. Nevertheless, because the orien-
tation of the shield with respect to the A.C. fields may not be optimum
it is best that devices operating from the power line should be kept at
some distance (at least a few feet) from the shields in which case there
should be no problem. It might be desired, however, to have a light inside
the shield. 1In this case, it would be possible to design a special shield
just for the light and related wiring, but it would perhaps be better to
locate the light at some distance from the shield and focus the light
into it by mirrors and lenses. An alternative method would be to lead
the light by means of a "light pipe", into the shield. A very simple but
effective light pipe consists of a solid lucite rod bent to the desired
shape. The ends are cut straight across and polished. To obtain maximum
light transmission the "pipe'" sides should be polished and supported
by narrow edges such as a hole through a thin sheet of metal or a wire

loop.

If the varying field is of considerable magnitude and cannot
be removed it may be necessary to specifically design a shield for this

purpose, Wadey(S)

gives formulas for the attenuation of shields against
varying fields.

(8)

Schweizer derives a general procedure for concentric spheri-
cal shells for any number and gives specific formulas for one, two and
three shells. He further makes various approximations when the thick-
ness of the shells are small and when the permeability is large. He does

not take into consideration the fact that the permeability is different
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for different shells, however, except in the general procedure. His
final three approximations appear to have an error in the numerical
factor and a further condition must be true, i.e., d must not be too

small, Schweizer's earlier approximations which appear to be correct

are:
if: (bi—ai)/bi = ti << 1 fractional metal thickness

(ai+l—bi)/ai+l = di << 1 fractional air space thickness
and also

u>>1

Then for one shell
F«1+2/3qp ti
two shells
N 2
F=~1+4+2/3q (ti+t2) + 4/3 qu £ty d1
three shells

5 2
F=1+2/3u [t1+t2+t3] + 4/3 [tlt2d1+t2t3d2+tlt3(dl+d2)]

3

+ 8/3 u d,d

F152%3 4%

These are useful and realistic approximations and can be used with re-
servations to estimate the shielding factor of cylindrical shields. For
shoft capped cylindrical shields where L % D they are probably quite
good. For long cylindrical shields it would be best to develop similar
approximate formulas starting from Stern's exact equations or use

)

Will's formulas for one to three shells as given in Wadey As an
example we will calculate using the spherical formula above the shielding
factor for a triple spherical shield with the same radii as the cylin-

drical shield nest 1 previously computed using Stern's formulas.

a; = 10.0 bl = 10.1 inner sphere radii
a, = 10.2 b2 = 10.3 middle sphere radii
ay = 10.4 b3 = 10.5 outer sphere radii
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also let

u =20 x 103

= 20 x 103 x 20 x lO3

=
I

L)
3 3 3
o= ulu2u3 =20 x 107 x 20 x 10” x 42 x 10

as an attempt to compensate for changing permeability.

Then

) = (bl-al)/bi = 0.1/10.1 = .00990
t2 = 0,1/10.3 = .00971

t3 = 0.1/10.5 = .00952

dl = (a2--bl)/a2 = 0.1/10.2 = .0098
d2 = 0.1/10.4 = .00962

1+ 2/3 (20x103) (.02913) + 4/3 (20x103)2 (3.662x10_6)
5
13,

e
1

+ 8/3 (20x103)2 (42x10%) (86,431x10"

F =1+ 38.8 + 1953 + 3872 = 5865

Approximately 3/4 of this should be taken to approximate a
cylinder, hence Fc ~ 4398 which is about 1.8 times too large as compared

to our previous result but it admittedly is only an approximation.

Chapter 6 - References

1. Rucker, A.W., Phil. Mag. 37, 95, 1894.

2, Sterne, T,E., Multi-Lamellar Cylindrical Magnetic Shields, RSI,
October 1935, Vol. 6, pgs. 324-326.

3. Wills, A.P., Phy. Rev. 9, 208 (1899).

4, Wadey, W.G., Magnetic Shielding with Multiple Cylindrical Shells of
Variable Permeability, (unpublished), 1957.

5. Wadey, W.G., RSI, Vol., 27, No., 11, November 1956,

- 116 -



Esmarch, W., Ann. Physik, 39, 1546 (1912).

Teasdale, Robert D., Magnetic Alloy Shields for Color Television

Tubes, Proc. of the National Electronics Conf., Vol. 9, February
1954,

Schweizer, F., Magnetic Shielding Factors of a System of Concentric
Spherical Shells. Jour. App. Physics, Vol. 33, No. 3, Marcy 1962.

- 117 -



CHAPTER 7
HOW TO MEASURE MAGNETIC FIELDS

In order to draw conclusions and make calculations as well
as to describe a magnetic field for others it is necessary to give it
a number or numbers with appropriate units attached. Sometimes this
can be done simply by knowing the configuration of conductors, currents
and magnetic materials and making the appropriate calculations. The
flux density in the region of interest 1s generally designed to be a
certain value and this is known, But to rely on these calculations
alone is most unsatisfactory unless measurements simply cannot be made
for some reason., For example, the region of interest might be extremely
small and/or inaccessible when all component parts are in place. 1In
this case, we would have to rely on the calculated value alone. In
most cases, however, it is possible and desirable to measure, by means
of a calibrated instrument, the magnitude of the flux in the region of

interest.

Most magnetic flux measuring instruments do just that, measure
the flux or flux density in the region of interest and not the magneto-
motive force or the magnetic fileld strength or intensity. These instru-
ments may be divided into the following categories based on principle of

operation:

moving coils - snatch coils, rotating coils
Hall effect - semiconductor material
flux gate — high permeability materials’
miscellaneous - semiconductor material-magnet diodes
attraction of small magnets, rotation of
small magnets, magnetic sensitive resistances
Any of these principles can be incorporated into an instrument

of fairly high accufacy and precision which will hold its calibration

for long periods of time.
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The accuracy required in the description of the magnetic field
in biological experiments is not necessarily high. If the absolute value
of the flux density is on the order of 5% or even 10% this may be quite
satisfactory. As was explained in Chapter 4, if a high degree of unifor-
mity of the flux density is not required then for a given size coll sys-
tem we have a tremendously increased working volume available. Only a
few experiments to date have shown a marked dependence of the blological
effect on the magnetic flux density and it is difficult to imagine any
biological mechanism which would be more than linearly dependent on small
differences in the magnetic flux'density. There 1s, of course, the pos-
sibility of a "resonance" mechanism which would be sharply dependant on
the flux density, but from the reported results this seems remote. Thus,
it is unlikely that an absolute measure of the magnetic flux density of
an accuracy better than 10% would be necessary. A precision of measure-
ment (reproduceability) of about 2 or 3% is quite desirable, however.
Usually this can be accomplished with most commercial instruments utiliz-

ing moving coil, flux gate or Hall effect transducers.

The moving coil flux meters operate on the following principle.
A conductor cutting lines of flux will have an electric pbtential produced
at its ends due to the force on the free charges in the conductor which
is proportional to the velocity with which the conductor cuts the lines

of flux and the flux density. This may be expressed in several ways:

V = -'%t— (MKS and CGS).

where ‘
V = potential at the wire terminals
= flux -
or _
V = Blv (MKS and CGS)
where

flux density

]

length of the wire:

<
]

velocity of the wire
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One of two mechanical arrangements is usually employed: a
small flat coil of wire of a number of turmns, is "snatched" or rapidly
removed from the region of flux density B1 to another region of flux
density B, = 0, It is positioned so that the original flux density Bl

2
is perpendicular to the plane of the coil.

1] |
B,

B3 LA

Lhmh' v Y Y v

Let
e = the instantaneous voltage produced at the coil terminals
i = the instantaneous current produced by the voltage through
the circuit resistance
r = the circuit resistance
N = the number of turns in the coil
¢ = the flux through the co6il where ¢ = BA
A = the coil area ‘
then
e = =N %% (MKS and CGS)
and

;o _ N d¢
i=e/r= r dt
if we integrate this over the time t required to move the coil from

flux ¢l to ¢2 (flux density B, to B2)

1
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then

t ¢2
q= J idt = - %-J dé
o) ¢l
q==-3 (0
where
¢, =0
N, _X
=7 % =3 BA

Solving we find
- gr _gr
¢ N and B NA (MKS and CGS)

A ballistic galvanometer will produce a deflection proportional
to the charge passed through it in a short time., Thus, the deflection
of a ballistic galvanometer attached to a "snatch' coil can be calibrated
in terms of either ¢ or B if n, the number of turns in the coll, r the
total resistance of the circuit and A the area of the coil are known.
Portable ballistic galvanometers calibrated in terms of flux are known as
fluxmeters or integrating fluxmeters.* Integrating electronic circuits
utilizing operational amplifiers are also used to provide the conversion
of ¢ to e and hence B, i.e., to integrate the current produced by the
search coil.** Search or "snatch" coils for these instruments are not
difficult to make for specific applications and can be readily calibrated
in ferms_of their NA or turns x area by comparison with a coil of known

NA using a fixed uniform magnetic flux density.

*A typical instrument of this type is manufactured by the Sensitive
Research Instrument Corp., New Rochelle, New York, Model FM, accuracy
0.5 of 1%, 5 inch mirror scale range, 10 maxwells per division (10-3
webers) (1000 turn coil) most sensitive scale to 5 x 106 maxwells
(50 x 102 webers) full scale (1l turn coil), least sensitive scale, r
ranges, 8" x 7 1/2" x 6" portable. Search coils of various areas
available. '

*%A typical instrument of this type is manufactured by Magnetmetrics,
0.S. Walker Co., Worcester, Mass., Model MF-1l, utilizes a chopper
stabilized operational integrator, accuracy +2%, 6 inch scale, range
105 maxwells full scale (most sensitive), to 107 maxwells 3 ranges can
be directly set for various search coil NA.
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A second type of flux measuring device using a moving coil is
one in which the coil is rapidly rotated along a diameter so that the
plane of the coil is continuously changing its angle to the magnetic
flux,

ay' § of rofation
L % B

The flux passing through the coil when its plane 1s at an angle
¢ to the direction of the flux is:
¢ = BA cos®

where A is the coil area: diffefentiating with respect to time

4 _ _ a8
at BA sin at

where d6/dt is the angular velocity of rotationm.

For N turns of the coil the induced voltage is then:

= -y d¢ de
v N at BNA sinb It

if we let o = g% 6 = wt and V

BNA w sin wt

The angular velocity w is known and fixed as is the product
NA, hence .
Bk sin wt

<
]
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where k is a constant of the instrument and the voltage generated is

an alternating sinusoidal voltage whose magnitude is proportional to the
flux density B. This voltage may be measured by any number of kinds

of sensitive A,C., voltmeters* or its amplitude observed on an oscillo-

scope.,

To show the magnitude of the voltage generated we give the

following example:

let
N = 100 turns
A=1 cm2 = 10_4 m2
Speed of rotation 1200 rpm = 20 rev/sec
= 27/60 x 1200 = 125,7 rad/sec
= 1000 gauss = 0.1 Webers/m2
then
V = BNA w sin wt
V = (1000) (100) (1) (125.7) sin (125.7t)
= (0.1257x108) sin wt ab-volts (CGS,EMU)
or
V= (0.1) (100) (107%) (125.7) sin (125.7¢t)

0.1257 sin (125.7t) volts (MKS practical)

or a 20 cycle wave of approximately 1/8 volt peak amplitude or .0889
volts RMS. |

- Various modifications of these basic instruments are possible
and available, such as differential or flux-gradient utilizing two sim-
ilar coils spaced a known distance apart and an akial field design having
two coils rotating at right angles to each other for measuring two right

angle flux components,

*A typical instrument of this type 1s manufactured by the Rawson Elec-
trical Instrument Co,, Cambridge, Mass., Model 822 (other models avail-
for different ranges), accuracy may be adjusted to + 0.1% or + 0.05
gausses probe dia. 3/4", length 19", range 0-1000 gausses, sensitivity
lowest range 0.1 gauss/division. Instrument can be used as direct
reading or as null balance with greater sensitivity. Calibration mag-
nets available,
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The Hall effect (discovered by E. W. Hall in 1879) magnetic
flux density detector is based on the basic principle that a moving
charge in a magnetic field experiences a force perpendicular both to

the direction of motion and to the direction of the field.(l)

The force
is proportional to the charge, the velocity and the flux density. When
curreﬁt flows through a slab of semiconductor material (see figure)
(indium arsenide, indium antimonide, bismuth, germanium, etc.) this
force on the electrons in the current pushes these electrons towards

the edge until an equilibrium condition is obtained. The potential ob-
tained is proportional to the current, thickness (t) and flux density

through the slab.

B auwiform flux 400\:&&,
acvoss slab

T. cous":‘u.‘t
cuvvent souvce 1

X3
'f-

vn éq U‘(t‘-1e
defector

The simple theory relationship found is:

Via11 = X T
where K is the Hall constant.

Without going into a host of complications we find that for

mixed units the order of magnitude of the voltage is about 0.1 volt for
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a field of 104 gauss (1 weber/mz) for a current of 0.1 ampere and a
thickness of slab about one millimeter. In order to make a practical
instrument many disturbing factors must be overcome. Temperature coef-
ficient, precision of location of contacts, resistance of the voltage
detector, heat loss, size and shape of the slab, internal resistance,
flux density which is a function of the magnetic field concentrators
and choice of material are some of these factors which have to be suc-

cessfully chosen to make practical operating instruments,

One great advantage of the Hall probe is the very small size
in which the probe can be made. This is extremely useful for obtaining
good resolution of the changes in flux density in a small region. Typical
probe sizes are in the range of one-half to one and one=half millimeters
thick by two to 10 millimeters wide by one to two centimeters long.
Special probes can be made even smaller, but are generally less sensitive.
Another advantage is that Hall detectors can measure fluctuating magnetic
fluxes up to frequencies of the order of one-half megahertz with the
proper voltage sensing equipment. Many companies supply either or both
Hall probes and auxilliary measuring equipment and many modelé and ranges

are available each as battery operated models and flux gradient probes.*

The Flux-Gate Magnetometer

This device for measuring magnetic flux is based on the trans-

(2)

former principle'“’. The sensing device consists of two highly permeable

cores of magnetic materials, placed parallel to each dther, (some units

*Two such typical instruments are: : _
Bell, Inc., Columbus, Ohio, model 240 Incremental Gaussmeter. Direct
reading on 12 ranges from 0.1 gauss (10-5 w/m2) to 30,000 (3 w/m2)
full scale. Accuracy 1% of full scale. Synchronous modulation and
demodulation amplifier system, Zero suppression to 14 x 103 gauss to
enable differential measurements to be made (accuracy 1% to 5%),
various typical small probes and calibration magnets available.

Radio Frequency Laboratories (RFL) Boonton, New Jersey, Model 1965
Universal Gaussmeter, Direct reading on 16 ranges from 0.1 gauss

(10~5 w/m2) to 104 gauss (1 w/m2), accuracy + 3% of full scale direct
reading, + 1% with calibration, Battery operation option built in,
various scale expansion and suppression built in measures static and
.AC fields 20 Hz to 400 Hz various, small probes and reference magnets
available.
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use a toroidal ring of material) on each of which is wound two windings,
a primary and a secondary. In one configuration, the primaries are con-

nected series-opposing and the secondaries series—aiding.

tt e
- Secondary
h D (44'0’;;1,)
H| N
T4
/Of/ma.rbj
LT_J]_‘ t'-i (epposivig)

When an exciting current of some low frequency, say 20 Hz to
20 KHz is fed to the primaries, the voltage induced in the secondaries 1is
zero with zero external B field becausé of the cancellation due to the
opposite phase., When a constant flux from an external field is applied,
an unbalance in flux in the cores occurs. The external field produces
a flux in the cores which adds to that prcduced by the primary in one
rod and subtracts in the other.. Dpe to the extreme non-linearity of the
permeability of these cores with respect to the flux density in them,
a volfage s generated in one secondary which is not balanced by that
in the other. This difference or unbalanced net voltage from the two
secondaries is proportional to the external flux density B and is of a
frequency twice that of the driving frequency. The amplitude of this

second harmonic is then a measure of the external magnetic flux density.
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Suitable electronic circults are used to amplify, filter and
phase defect this signal which can then be displayed as a meter indica-

tion.*

In some flux gate transformers, additional windings are placed
on the cores. A steady current may be passed through these windings to
produce a flux which cancels the flux produced in the rods by the external
field. These detectors may then be used as differential-flux measuring
devices and/or as a means of expanding the scale in the region of interest.

These instruments are quite stable and can be made highly
sensitive, Commercial instruments are available which will read to 10-4
gauss (10—8 weber/mz) full scale and special instruments have been made
for geomagnetic and space surveys with sensitivities several orders of
magnitude greater. In general, the probes are fairly large in size an
it is impossible to use a probe two inches long to measure the flux
distribution in a region say 4 inches long. For fields of large extent
this is no problem, but for many laboratory experiments this drawback

may prohibit the use of this type instrument,

The above techniques are the most common and useful methods for
determining the magnitude, gradient and direction of magnetic fields

which might be used for Biomagnetics experiments.

#Typical instruments of this type are:

Forster/Hoover Electronics, Inc., Ann Arbor, Michigan, Magnetometer
Type MF-5050 ten ranges, 103 gauss (10-7 w/m2) to 1 gauss (10-4 w/m2)
full scale with a factor of 10 increase sensitivity switch. Internal
semicalibration and compensation or zero suppression up to 1 gauss
(10-4 w/m2) on any range. Calibration accuracy + 1% on the 4 decade
ranges. Standard probe size approx. 2 1/2" x 1" dia. AC fields can
be monitored via scope jack.

Gammatronix Inc., Dublin, Ohio, Model 110 Magnetometex, five ranges
10~2 gauss (10-6 w/m2) to 1 gauss (10-4 w/mz), Linearity 2% of full
scale, accuracy not stated. Probe 1" dia. x 7 1/2" long, solid state
circuits. Low cost, small size,

Magnaflux Corp., New York, New York, Model FM~204, ranges 10, 10_3 gauss
(10-7 w/m2), full scale, most sensitive range. Accuracy + 1% fo full -
scale, long term stability 10=5 gauss. Smallest probe 2" long x 1/4" x
1/4". Speed of response .0l seconds. A.C. fields may be monitored via
_scope jack. Other probes for gradient, etc.,, available.
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Miscellaneous Methods

Movement of Small Magnets

Almost any magnetic phenomena can be used to measure the flux
density of magnetic fields. A simple small compass can be used to indi-~
cate the field direction, the needle aligning itself with the direction
of the field with the geographic north seeking end of the needle point-
ing toward the south pole of the magnetic field. It is the convention
to say that the sense of the direction of a magnetic field is from the
north magnetic pole towards the south magnetic pole. If a spring is at-
tached to the compass needle which will restore it to an equilibrium
position with respect to a fiducial mark in the absence of any external
field, then the angular deflection of the needle when placed perpendicular
to an external field can be used as a measure of the magnitude and direc-
tion of the flux density of the field. The force of attraction (or
repulsion) of a small magnet acting against a spring (or gravity) has also
been used to measure the strength of magnets. Simple special purpose
instruments of not very great accuracy or sensitivity have been made

using these principles.

‘Other instruments have been based on the change in resistance

of certain conductors or semiconductors when placed in a magnetic
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field.* The resistance curve is not linear except above about 2 x lO3
gauss (0.2 webers/mz) (linearity is approximately 1% above this value).

The approximate characteristic is shown on the preceding page.

These units are quite small--on the order of a few millimeters
square by a fraction of a millimeter thick and will respond to frequencies
as high as one megahertz and can be used from cryogenic temperatures (4.2°K)
up to 100°C. A disadvantage is the rather high temperature coefficient
of resistance 0.4% per °C. Conventional resistance bridge circuits
may be used to measure the resistance or direct reading resistance
circuits may provide a readout directly in flux density. Accurate
calibration is required at any flux density at which this device is to
be used and especially at values below the linear range. No figures

are available on repeatability, but this is presumably good.

The Magnetodiode

A new device called the Sony Magnetodiode**(SMD)(3) is a
magnetosensitive, semiconductor device of germanium or silicon which
works on the principle of controlled lifetime of injected cafriers by
an external magnetic field. It is highly sensitive to magnetic fields,
but is limited by noise at about 0.1 gauss (10_5 W/mz). A typical unit
is made in the form of a small block of intrinsic germanium 3 x 0.6 x
0.4 mm, The units are diodes and have typlcal diode characteristics

as shown on the next page.

*A typical example of this instrument. is a sensor built by American
Aerospace Controls Inc., Farmingdale, New York, The MISTOR Model
MR-A. Various models ranging in resistance from one to 5000 ohms at
zero flux density. Sizes 1 1/2mm square by O.lmm thick to 1 cm
square x 0.2 mm thick. Accuracy figures are not given.

**Invention of Toshiyuki'Yamada.of SONY Corporation research laboratory.
Information on this device from SONY data sheets, Sony corporation
Tokyo, Japan.
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V-—
SMD diede character;str¢s

Curve (a) shows the current Ia’ for a given applied voltage Va’ when the
transverse magnetic flux i1s zero. When a field B is applied in one
direction (designated B+) the current will increase to Ic’ when the same
field is applied in the opposite sense the current will decrease to Ib'
The voltage-flux characteristic in a simple circuit is shown in the

next figure.
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The .response of these diodes is linear up to about 500 gauss (.05 w/m2)
flux density and gradually saturates beyond this point. The noise level
is equivalent to about 5 x 10—2 gausé (5 x 10_6 w/mz) which limits ac~-
curate measuremeﬁt of flux densities to values somewhat higher than this
value without the use of flux concentrators. Flux concentrators, es-
sentially pole pleces of high permeability material designed to increase
the flux density through the sensitive diode, will allow external

fields as low as 10—5 gauss (10—9 W/mz) to be measured linearly. Fre-
quency response is excellent there being practically no change from

d.c. or static fields up to about 2000 hertz and down by a factor of 2
at about 10,000 hertz. Flat response in special small samples has been

obtained up to 100 KHz. Temperature dependence is a function of the
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material and the dimensions; with a suitable choice it can be made

nearly independent (about + 5%) of temperature from -10° C to 50° C.

This device is useful in applications not requiring the high
accuracy and precision of Hall devices nor the high linearity (at high
flux densities) of the magnetoresistive devices. It can be operated in
very simple circuits. It is available in dual units which are useful
in cancelling temperature dependence. In a bridge circuit its sensiti-
vity may be given as about 1 volt per milliamp-kilogauss which is some

two to four orders of magnitude more sensitive than Hall devices,

At the present time no instruments are being manufactured
utilizing these magnetodiodes. I would expect, however, that in the near
future enough experience will have been obtained with them that small
relatively low priced instruments will be introduced. They should be
quite useful for mapping fields because of the small probe size. Even
with reasonable flux concentrators the probe size will probably be

less than 1 cm dia x 2 cm long.

Measurement of A.C. Fields

If the magnetic field magnitude we wish to measure is not
steady with time but is regularly fluctuating with we have a somewhat
easier job. Let us assume we have a cylindrical coil of wire in air
energized by a 60 cycle current which reverses its direction 60 times

per second.

T /
/;e/t/ coil ‘\: \/ fima =
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The flux and flux density magnitude follow the current exactly in phase
and are proportional in amplitude. When the current reverses, the
magnetic flux direction reverses, When the current goes to zero, the
flux density goes to zero. Suppose we now put a small stationary search
coil of N turns and area A In a part of the field where the flux density
is B. Then with the following equation we find,

= -y
V = - N3 (CGS and MKS)

Now the current can be represented as

I =1 sin wt = I sin (2nft)
max _ max

The flux density is proportional to the current so:
B=2B sin (2nft)
max
The flux through the search coil is
¢ = AB = ABmax sin (2nft)

differentiating
d¢ _
It AB ax 21f cos (2mwft)

and the voltage at the terminals of the search coil will be

- -4 _
\Y N it NA Bmax 2nf cos (2mft)

If this cosine wave 1s observed on a calibrated oscilloscope the maxi-
mum voltage from zero to peak may be measured and will be proportional

to B .
max
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Volts
T

Ctime

Seavrch coil
Uo /t‘a-’c,

Let us put in some typical values for the various components:
A .. =5 cm2 =5x 10_4 m2
coil
N = 100 turns
B

_ _ 2
ax 500 gauss = .05 w/m

f = 60 hertz 2nf = 377 rad/sec

Then:
V=-=-NAB 2nf cos (2nft)
max
V = =(100) (5) (500) (377) cos (377t) V = —(100)(5x10-4)(.05)(377) cos (377¢t)
(CGS) (MKS)
V = - 0.963 x 10° cos (377t) emu volts V = 0.963 cos (377t) volts
. or ab volts (MKS)
(CGS)

Thus we find that we obtain approximately 1 volt zero to peak deflection

on the oscilloscope trace.

If we had measured this voltage with a high impedance AC volt=-
meter reading rms volts (as most a.c., meters do) we would have obtained
0.963/vV2 rms volts equals 0.682 rms volts. Since for a sine (or cosine)
waveform the zero to peak voltage is related to the root mean square
(rms) voltage as v2 V (xms) = V (zero to peak). This method is an ex-
tremely simple and accurate way of measuring alternating magnetic flux

densities which are not too small.
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The Hall effect device, the magnetoresistor and the magneto-
diode (if they are energized by a steady dc current) are suitable for
measuring regularly fluctuating magnetic fields. In some instruments
these devices are energized by pulsating or high frequency alternating
currents, in which case some difficulty may be encountered with them in
measuring fluctuating magnetic fields, especially if the frequency of

the field is close to the frequency of the energizing current,

The use of low frequency currents to measure and map the filelds
of coils such as Helmholtz, Reubens, Barker, etc., intended to be used
with dc currents is sometimes useful., If the distributed capacity of the
coil is small (and this will be true for many field colls - see ) and
(5)) we may energize the coil with a low frequency alternating current
whose peak value is on the order of the value of the d.c. current we
eventually wish to use., If the field is measured by a small pickup coil
as just described we have a measure of the flux density that would be

produced by the direct current, For example, let us assume the following

values for g field producing coil.

a=>50cm=0.5m radius of coil
1 =10 cem=0.1m length of coil
f = 1000 hertz

n = 100 turns

I = 0.5 ab amperes = 5 amperes

My = 4T x 1077 b/m

Then the flux demsity at the center of the coil is given approximately
by

U In
B = 288 (cag) B = g (MKS)
a
5 - (6.28)(0.5) (100) 5 o 41 x 1077 (5)(100)
50 2(0.5)
-4 2
= 6.28 gauss = 6.28 x 10 ~ w/m’
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G)

The inductance of a coil of this size is approximately given by

2 2
L= 949%—2—2— K micro henrys in

where mixed units

a = radius cm

n = number of turns

b = length cm

K = 0.2 approx, for this a/b ratio

(.04) (50)%(100) > -2
L == 10y (.2) = 2 x 10 © henrys

An estimate of the self capacitance is given by

Co = HD micro microfarads
in mixed units

where

2a = dia., coil in cm

0.7 approx., for this b/a ratio

70 uufds.
7 x 10_1l-farads

c_ = (0.7)(100)

The ‘frequency required to resonate this combination of L and C is

w2 = l~.= 1 ’ = l_.x 1013’
LG 9x10™%k7x10” 1 14
w2 = 71 x 10lo

w 8.4 x lO5 rad/sec

f = 134,000 hertz

So that for any frequency say on the order of %a-of this- frequency or

less, the distributed capacity may be neglected, hence at 1000 cycles
we can say the self capacity is negligible.
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If we now assume a testing circuit as follows:

Test cu-coit

where

Emax sin 2nft (volts) (low resistance generator)

test resistance (ohms)

HoE oo

industance of coil (henry)

resistance of coil (ohms)

Rp + &y

N

e=2721
E sin2nft E sin2nft
max max

7 (R2+u)2L2)

angle ¢ = tan - C%E)

e
I

1= —%25 sin (2nft-¢) where 22 = R2 + w2L2

The voltage across the test resistor RT is then: .

eRT = _RT = ? E sin (2nft=¢)

max

This voltage is in phase with and proportional to the current through L,
It is the current through L which produces the field in the region of

L so that the field will then be. proportional to this voltage e, which -

Rt

in turn is proportional to Emax' By measuring the peak value of ep
' T
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: E
we obtain 8% and dividing by RT we then have a measure of Ema /Z

Z X
which on comparing to i above we see is the peak value of i or imax'

This will give the peak value of B and may be used in,

27 1 uo In
B = 2 (CGS) B = Sa (MKS)
2 i N uoi N
max 0 “max
B = ——la2 B =0
max a max 2a

Using the same small test colil as in the previous example

5 cm2 =5 x 10—4 m2

A =
N = 100 turns
B = 6.28 gauss =.6.28 x 10-4 W/mz
max
f = 1000 hertz
we find for V = — NA B 2nf cos (2nft-¢)
max
V = —(100) (5) (6.28) (6.28x10°) cos (6.28x10°-¢) (CGS)
V = -(100) (5x10™%) (6.28x10™%) (6.28x10°) cos (6.28x10%-¢) (MKS)
Vmax = 1,97 x 107 ab-volts (CGS) peak at center of field coil
Vmax = 0,197 volts (MKS) peak at center of field coil.

Thus; we find that by using a thousand éycle energizing current
for the field coil we can obtain with a simple test coil a reasonable
voltage for even a small flux density in the field coil. Every measure-
ment made of the flux density with the alternating field will be exactly
equal to the field which will exist when the peak alternating current is
replaced by a steady direct current of the same value., Further, the
alternating current peak value can be simply measured by measuring the
peak voltage across a known resistance in series with the field coil when

the self capacitance of the field coil is small,
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INDEX

A, C, fields
see Flux Meters (a. c, fields)
used in coil measurement, 135

Accuracy
required biological expts., 119
also see Flux Meters

Alnico, 81
Alcomax, 64
alloy, 67
manufacturers, 82

Ampere
experiment, 21
law, 11

Approximations
coils finite cross section, 58ff

B, induction, flux density
see Flux Density

Bacteria, 4
Ballistic galvanometer (see Flux Meters)
Barker, J. R., 50
figure,3 & 4 coil, 55
ref., 62
three coil, 47
three & four coil dimension, 54
BH (see Energy Product)
B-H curve, 68, 69, 70, 71, 72, 75, 78
Blot-Savart
derivation, law, 24
law, 18
Blewett, J. P., 34, 62

coil configurations, 49
ellipsoidal coil, 48
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Busby, D. E., 6, 7
CGS see System, CGS

Chapman
earth's field measurements, 85

Coercivity
fig., 70
He (coercive force), 71
permanent magnet material, 67

Coils
approximations, 58
Barker's, 47
ellipsoidal, 48, 49
finite cross section, 58
Helmholtz, 42, 43
Pittman and Nardelich, 49
Ruben's, 46
snatch, rotating, 118
special configurations, 45
symmetric 4-coil system, 51

Compass
Chinese, footnote, 3

Conversion of Units, 16, 17

Correction factors
for permanent magnets, 79

Dielectric constant
absolute, dimensions of, 13

Dimensions
see System, Dimensional

Dip angle
definition, 86
table, 87
variation inside building, 88

Doell, 91

Dwight, H. B., 34
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Earth's magnetic field
cancel, 89
changing, fluctuations, 85, 89, 90
cycles, 85
declination, 85
dip angle, 86
dip angle table, 87
history, 87
location of poles, 84, 85
magnetic field model (sphere, bar), 83, 88
reduction, 88
reduction by shield, coil, 88

Electric charge (electrons)
dimensions, 13
moving, 3
produce magnetic fields, 65, 66

Electromotive force, see Potential
Ellipsoidal coil, 49

EMF, see Potential

End effects (see Shields, end effects)

Energy Product
BH, 74
(BH)pax curve, 75
max, 67 '

Eshbach, 0. W., 19

Esmarch
end effect, shields, 112

F shielding factor
F Stern's equation, 94
g Stern's equation, 94
single cylinder, 98

Faraday, Michael, 3

Field
'~ magnetic, 20
magnetic, along axis of loop, 24
magnetic, from Helmholtz pair, 28, 29, 30, 31
magnetic, off-axis, 33, 35
magnetic, on axis at center of coil, 26

Fleming, 90
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Flicker Fusion, 4

Flux concentration
in shield cylinder, 98

Flux density (induction), B

around wire, 23

at center of coil, 18

axis of loop, 26

Barker 3 coil, 47

center of loop, 25

conversion table,units, 16
dimensions, 13

in solenoid, 18

names, systems, 15

off axis general, 33

regions of uniformity, Helmholtz, 42
Ruben's coils, 46

permanent magnets, 63

uniformity, various coils, fig., 55
uniformity, various coils, table, 54

MOV W W W W W v v w

==RNv=Rv =R v B v -3 v= B e~ B v~ I v - o~ B v < B o~

Flux gate ‘magnetometer
description, 118

Flux meters, also see Magnetic Field Measurements
a. c. fields, 132
ballistic galvanometer, 121
compass type, 128
flux gate, 118, 125
Hall effect, 124
integrating, 121
magnetodiode, 129
manufacturers, see footnotes, 121, 123, 125, 127, 129
moving coil, 119
resistance, 128
rotating coil, 122
small magnets, miscl., 128
Sony, 129

Flux, magnetic (also see Flux Density)
density at center of n-turn coil in air, 18
density inside infinite solenoid, 18
dimensions of, 13
units of, 16

Force
electrostatic, 4
magnetizing, dimernsions, 13
magnetizing, units, 16
magnetomotive, definition, 20
magnetomotive, dimensions, 13
magnetomotive, units
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Gauss
earth's field calc., 83

Geyer (flux gate), 139

Gilbert, William
De Magnete, 3
magnetic model, 83

Gilbert, N. R., 19

Hadfield, D, 7, 81
magnet theory, 65
magnets, air gap, 80

Hale
suns magnetic field, 90

Hall effect, 118
explanation, 124

Harnwell, G. P., 19, 139

Hart, P. J.
use of tables, 34, 39, 40, 41, 42, 43, 62

Henry, Joseph, 3

Hysteresis
permanent magnet, 69

Inductance
of coil, 136, 137
units of, 16

Induction
dimensions of, 13
magnetic (also see flux density), 17, 20
units of, 16 )

Instruments, also see Magnetic Field-Measurements, 118 f£f
Iron

alloy, 67

soft iron, 68
Laws

Ampere's, 11

Biot~Savart, 18, 24

Coulomb's, 11, 13

Lenz, H, F. E,, 3
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Lucretius, 3
Magnes Lopils, 3

Magnet materials, 63ff
manufacturers, 81, 82 refs

Magnetite
model, 83
natural magnet, 3

Magnetomotive force, 76
air gap, working, 80
definition, 20
permanent magnet, 73
related to B, 24

Magnetic circuit
magnet, 75, 76
magnetic field, 20

Magnetic domains, 65

Magnetic field measurements, see also Flux Meters
flux, 118
measurements, 118ff
pickup, 89
60 cycle, 89

Magnets, 64, 70
air gap, 63
equations, 73, 77
length, 63
magnetic field, 64ff
magnetization, 81
‘materials (alnico and others), 67
permanent, 63ff

Magnetic Poles, 66
earth's, 83
figure, 84
geomagnetic, 83
motion, earth's, 85
units, strength, 16

Magnetizing force, also see magnetomotive force
permanent magnet, 68, 72, 73

Maxwell, James Clark, 3

Measurements, see flux meters
also see magnetic field measurements

MKS, see System, MKS
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Molypermalloy
property, 94

Moon, magnetic field, 90
MU (see permeability)

Mu~metal, 94
graph, permeability, 97

Oersted, Hans Christian, 3

Penetration
field into shields
see Shields, end effects

Permeability, 92ff
absolute, dimensions of, 13
B vs. u curve, 71
differential, 69
function of flux density, 94, 98
graph, mu-metal, 97
initlal, 69, 99
maximum, 69
not constant, 71, 94
of free space, units of, 16

Permanent magnets (see Magnets)

Pi ttman s Mo' Eo
coil calculations, 49, 62

Potential, 123
biological, 6
dimensions, 13
electric circuit, 20
formula, 18
from coils in field, 119, 120, 122, 123
units, 16

Reluctance, 92
circuit, 20
circuit, magnet, gap, 76ff
dimensions, 13
law, 93
units, 16

Protozoa, 4
Remanence, 67
Rotors

air gaps, 80
reluctance of air gaps, magnets, 77ff

- 146 -



Rucker
shield thickness, 93

Saturation, 71, 72

Schweizer, F.
concentric spherical shells, 114

Semiconductor (also see Hall, diodes), 118
Hall device, 124
magnetodiode, 125
resistance, 128

Shield
fluctuation inside, 89
orientation, 89

Shields
against earth's field, 109
approximation calec., 115
attenuation db, 108
construction, 110
cylindrical, 92ff
effectiveness, 93
end effects, 110ff
end open, 111, 112
factor F or g, 93
graph, 113
illumination (light pipe), 114
length, 94, 112, 113
mechanical configuration, 93, 110
nest, calc., 100ff
number, 94
orientation, 114
penetration field, 111, 112
penetration, formula, 112
scaling factor, 109
spacing, 107
spherical, 114, 115
spiral, 93
Stern's formula, 94
thickness, 93
varying fields, 114

Shunting
figure, 92
magnetic field, 92

Smythe, W. R,
magnetic field calculations, 19, 34, 36, 37, 62

Sony (magneto diode), 129ff
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Space, magnetic field in, 90
Spacecraft, magnetic field in, 90

Stern
approx. to, 115
multiple shell calculation, 101ff
recursion formulas, 94
single shell formula, 98, 99

Sun, magnetic field, 90

System
astrophysical, 10
CGS, 15
CGS, electromagnetic, 15
CGS, electrostatic, 15
definitive, 11
dimensional, 10
electrogravitational, 11
electromagnetic, 11, 12
electrophysical, 11, 12
electrostatic, 11, 12
energetical, 10, 11
gaussian, 11, 12
gravitational, 10
MKS, 15
practical, 11, 12
physical, 10
rationalized, non-rationalized, 16
units, 15, 16

Tables
constants, various coil configurations, 54
dimension em and pract., 13
dimension, system, 10
earth's field, various locations
equations, physical laws, 18
field, Helmholtz pair, 29 .
field uniformity, Barker 3 coil, 48
field uniformity, Helmholtz pair, -42
fundamental quantities, 11
MKS pract., CGS em, conversion, 16
shielding factor, various shell spacings, 107
units ~ 5 systems, 15

Teasdale
field penetration, 111

Thomas & Skinner
design manual, 80

Toroidal, 67, 71

Units
see System, units
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Volts (voltage) (see Potential)
Wadey, 98, 100, 115
end effects, 112
field, penetration, 112
scaling shields, 109
varying fields, 114
Waidelich, D, L., 49, 62
Welch, A, V., 34, 62

Wills
approximation formulas, 115
shielding factor - single shield, 99
Wolff, N., 42, 62
Yamada (Sony diode), 129, 139

U (see permeability)
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